Question

If one of the diameters of the circle $${x^2} + {y^2} - 2x - 6y + 6 = 0$$      is a chord to the circle with centre (2, 1), then the radius of the circle is-

A. $$\sqrt 3 $$
B. $$\sqrt 2 $$
C. $$3$$  
D. $$2$$
Answer :   $$3$$
Solution :
Circle mcq solution image
The given circle is $${x^2} + {y^2} - 2x - 6y + 6 = 0$$      with centre $$C\left( {1,\,3} \right)$$   and radius $$ = \sqrt {1 + 9 - 6} = 2$$
Let $$AB$$  be one of its diameter which is the chord of other circle with centre at $${C_1}\left( {2,\,1} \right)$$
Then in $$\Delta {C_1}CB,$$
$$\eqalign{ & {C_1}{B^2} = CC_1^2 + C{B^2} \cr & {r^2} = \left[ {{{\left( {2 - 1} \right)}^2} + {{\left( {1 - 3} \right)}^2}} \right] + {\left( 2 \right)^2} \cr & \Rightarrow {r^2} = 1 + 4 + 4 \cr & \Rightarrow {r^2} = 9 \cr & \Rightarrow r = 3 \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section