Question

If $$\omega $$ is the cube root of unity, then what is one root of the equation \[\left| {\begin{array}{*{20}{c}} {{x^2}}&{ - 2x}&{ - 2{\omega ^2}}\\ 2&\omega &{ - \omega }\\ 0&\omega &1 \end{array}} \right| = 0\,?\]

A. $$1$$
B. $$ - 2$$  
C. $$2$$
D. $$\omega $$
Answer :   $$ - 2$$
Solution :
Given matrix is :
\[\left| {\begin{array}{*{20}{c}} {{x^2}}&{ - 2x}&{ - 2{\omega ^2}}\\ 2&\omega &{ - \omega }\\ 0&\omega &1 \end{array}} \right| = 0\]
By $${C_2} \to {C_2} + {C_3},$$   we get
\[ \Rightarrow \left| {\begin{array}{*{20}{c}} {{x^2}}&{ - 2x - 2{\omega ^2}}&{ - 2{\omega ^2}}\\ 2&0&{ - \omega }\\ 0&{1 + \omega }&1 \end{array}} \right| = 0\]
\[ \Rightarrow \left| {\begin{array}{*{20}{c}} {{x^2}}&{ - 2x - 2{\omega ^2}}&{ - 2{\omega ^2}} \\ 2&0&{ - \omega } \\ 0&{ - {\omega ^2}}&1 \end{array}} \right| = 0\left[ {\because 1 + \omega = - {\omega ^2}} \right]\]
\[ \Rightarrow {\omega ^2}\left| {\begin{array}{*{20}{c}} {{x^2}}&{ - 2{\omega ^2}}\\ 2&{ - \omega } \end{array}} \right| + 1\left| {\begin{array}{*{20}{c}} {{x^2}}&{ - 2x - 2{\omega ^2}}\\ 2&{ - 0} \end{array}} \right| = 0\]
$$\eqalign{ & \Rightarrow {\omega ^2}\left( { - \omega {x^2} + 4{\omega ^2}} \right) - \left( { - 4x - 4{\omega ^2}} \right) = 0 \cr & \Rightarrow - {x^2} + 4\omega + 4x + 4{\omega ^2} = 0 \cr & \Rightarrow - {x^2} + 4\omega - 4x - 4 - 4\omega = 0 \cr & \Rightarrow - {x^2} - 4x - 4 = 0 \cr & \Rightarrow {\left( {x + 2} \right)^2} = 0 \cr & \Rightarrow x = - 2. \cr} $$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section