Question

If $$OA$$  and $$OB$$  are the tangents from the origin to the circle $${x^2} + {y^2} + 2gx + 2fy + c = 0$$       and $$C$$ is the centre of the circle, the area of the quadrilateral $$OACB$$   is :

A. $$\frac{1}{2}\sqrt {c\left( {{g^2} + {f^2} - c} \right)} $$
B. $$\sqrt {c\left( {{g^2} + {f^2} - c} \right)} $$  
C. $$c\sqrt {{g^2} + {f^2} - c} $$
D. $$\frac{{\sqrt {{g^2} + {f^2} - c} }}{c}$$
Answer :   $$\sqrt {c\left( {{g^2} + {f^2} - c} \right)} $$
Solution :
Area of quadrilateral $$ = 2$$  [ area of $$\Delta OAC$$   ]
$$\eqalign{ & = 2.\frac{1}{2}OA.AC \cr & = \sqrt {{S_1}} .\sqrt {{g^2} + {f^2} - c} \cr} $$
Circle mcq solution image
Point is $$\left( {0,\,0} \right) \Rightarrow {S_1} = c,$$
$$\therefore $$  Area $$ = \sqrt {c\left( {{g^2} + {f^2} - c} \right)} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section