Question
If nearly $${10^5}C$$ liberate $$1\,g$$ equivalent of aluminium, then the amount of aluminium (equivalent weight 9) deposited through electrolysis in $$20\,min$$ by a current of $$50\,A$$ will be
A.
$$0.6\,g$$
B.
$$0.09\,g$$
C.
$$5.4\,g$$
D.
$$10.8\,g$$
Answer :
$$5.4\,g$$
Solution :
Total charge flowing through electrolyte,
$$\eqalign{
& q = it \cr
& = 50 \times 20 \times 60\,\,\left[ {_{t\, = 20 \times 60\,s}^{{\text{as}}\,i = \,50\,A}} \right] \cr
& = 6 \times {10^4}C \cr
& \therefore {10^5}C\,{\text{release}} = 9{\text{ }}g{\text{ of }}Al \cr
& \therefore 6 \times {10^4}C\,{\text{would}}\,{\text{release}} \cr
& = \frac{{9 \times 6 \times {{10}^4}}}{{{{10}^5}}}g \cr
& = 5.4g\,{\text{of}}\,Al \cr} $$