Question

If $$n$$ is a positive integer grater than unity and $$z$$ is a complex satisfying the equation $${z^n} = {\left( {z + 1} \right)^n},$$   then

A. $$\operatorname{Re} \left( z \right) < 2$$
B. $$\operatorname{Re} \left( z \right) > 0$$
C. $$\operatorname{Re} \left( z \right) = 0$$
D. $$z$$ lies on $$x = - \frac{1}{2}$$  
Answer :   $$z$$ lies on $$x = - \frac{1}{2}$$
Solution :
$$\eqalign{ & {z^n} = {\left( {z + 1} \right)^n} \cr & \Rightarrow \,{\left| z \right|^n} = {\left| {z + 1} \right|^n}\,\,{\text{or}}\,\,\,\left| z \right| = \left| {z + 1} \right|. \cr} $$
So the distance of point $$z$$ remain same from $$\left( {0,0} \right)$$  and $$\left( {- 1,0} \right).$$
So, $$z$$ lies on perpendicular bisector of line joining $$\left( {0,0} \right)$$  and $$\left( {-1,0} \right)$$  that is on $$x = - \frac{1}{2}$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section