Question

If $$m_1 , m_2 , m_3$$   and $$m_4$$ respectively denote the moduli of the complex numbers $$1 + 4i, 3 + i, 1 – i$$    and $$2 – 3i,$$  then the correct one, among the following is

A. $${m_1} < {m_2} < {m_3} < {m_4}$$
B. $${m_4} < {m_3} < {m_2} < {m_1}$$
C. $${m_3} < {m_2} < {m_4} < {m_1}$$  
D. $${m_3} < {m_1} < {m_2} < {m_4}$$
Answer :   $${m_3} < {m_2} < {m_4} < {m_1}$$
Solution :
$$\eqalign{ & {\text{Let, }}{z_1} = 1 + 4i,{z_2} = 3 + i,{z_3} = 1 - i{\text{ and }}{z_4} = 2 - 3i \cr & \therefore {m_1} = \left| {{z_1}} \right|,{m_2} = \left| {{z_2}} \right|,{m_3} = \left| {{z_3}} \right|{\text{ and }}{m_4} = \left| {{z_4}} \right| \cr & \Rightarrow {m_1} = \sqrt {17} ,{m_2} = \sqrt {10} ,{m_3} = \sqrt 2 {\text{ and }}{m_4} = \sqrt {13} \cr & \Rightarrow {m_3} < {m_2} < {m_4} < {m_1}. \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section