Question

If $${\log _{0.3}}\left( {x - 1} \right) < {\log _{0.09}}\left( {x - 1} \right),$$      then $$x$$ lies in the interval-

A. $$\left( {2,\infty } \right)$$  
B. $$\left( {1,2} \right)$$
C. $$\left( { - 2, - 1} \right)$$
D. none of these
Answer :   $$\left( {2,\infty } \right)$$
Solution :
First of all for $$\log \left( {x - 1} \right)$$   to be defined, $$x - 1 > 0$$
$$\eqalign{ & \Rightarrow \,x > 1\,\,\,\,\,\,\,.....\left( 1 \right) \cr & {\text{Now, }}{\log _{0.3}}\left( {x - 1} \right) < {\log _{0.09}}\left( {x - 1} \right) \cr & \Rightarrow \,\,{\log _{0.3}}\left( {x - 1} \right) < {\log _{\left( {0.3} \right)}}^2\left( {x - 1} \right) \cr & \Rightarrow \,\,{\log _{0.3}}\left( {x - 1} \right) < \frac{1}{2}{\log _{0.3}}\left( {x - 1} \right) \cr & \Rightarrow \,\,2{\log _{0.3}}\left( {x - 1} \right) < {\log _{0.3}}\left( {x - 1} \right) \cr & \Rightarrow \,\,{\log _{0.3}}{\left( {x - 1} \right)^2} < {\log _{0.3}}\left( {x - 1} \right) \cr & \Rightarrow \,\,{\left( {x - 1} \right)^2} > \left( {x - 1} \right)\,\,\,\,\,\,\,\,{\bf{NOTE}}\,\,{\bf{THIS}}\,\,{\bf{STEP}} \cr & \,\,\,\,\,\,\left[ {{\text{The inequality is reversed since base lies between 0 and 1}}} \right] \cr & \Rightarrow \,{\left( {x - 1} \right)^2} - \left( {x - 1} \right) > 0 \cr & \Rightarrow \,\left( {x - 1} \right)\left( {x - 2} \right) > 0\,\,\,\,\,\,\,.....\left( 2 \right) \cr & \,\,\,\,\,{\text{Combining}}\left( 1 \right){\text{and}}\left( 2 \right){\text{we get}}\,\,x > 2 \cr & \therefore \,\,x \in \left( {2,\infty } \right) \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section