Question

If $$\mu $$ is the universal set and $$P$$ is a subset of $$\mu ,$$ then what is $$P \cap \left\{ {\left( {P - \mu } \right) \cup \left( {\mu - P} \right)} \right\}$$     equal to ?

A. $$\phi $$  
B. $$P'$$
C. $$m$$
D. $$P$$
Answer :   $$\phi $$
Solution :
$$\eqalign{ & {\text{Since }}\mu \,{\text{is universal set and }}P \subseteq \mu ,\,P - \mu = \phi \,\,{\text{and }}\mu - P = P' \cr & {\text{So, }}\left( {P - \mu } \right) \cup \left( {\mu - P} \right) = \phi \cup P' = P' \cr & {\text{Now, }}P \cap \left\{ {\left( {P - \mu } \right) \cup \left( {\mu - P} \right)} \right\} = P \cap P' = \phi \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section