Question

If in an obtuse-angled triangle the obtuse angle is $$\frac{{3\pi }}{4}$$ and the other two angles are equal to two values of $$\theta $$ satisfying $$a\tan \theta + b\sec \theta = c,$$    where $$\left| b \right| \leqslant \sqrt {{a^2} + {c^2}} ,\,$$   then $${{a^2} - {c^2}}$$  is equal to

A. $$ac$$
B. $$2ac$$  
C. $$\frac{a}{c}$$
D. None of these
Answer :   $$2ac$$
Solution :
$$c\cos \theta - a\sin \theta = b.$$    Therefore, $$c\cos\alpha - a\sin \alpha = c\cos \beta - a\sin \beta ,$$       where $$\alpha ,\beta $$  are the other two angles of the triangle.
$$\eqalign{ & \therefore \,\,c\left( {\cos \alpha - \cos \beta } \right) = a\left( {\sin \alpha - \sin \beta } \right) \cr & {\text{or, }}\frac{c}{a} = \frac{{2\cos \frac{{\alpha + \beta }}{2}\sin \frac{{\alpha - \beta }}{2}}}{{2\sin \frac{{\alpha + \beta }}{2}\sin \frac{{\beta - \alpha }}{2}}} = - \cot \frac{{\alpha + \beta }}{2} \cr & \therefore \,\,\tan \frac{{\alpha + \beta }}{2} = \frac{{ - a}}{c} \cr & \therefore \,\,\tan \left( {\alpha + \beta } \right) = \frac{{2 \times \left( {\frac{{ - a}}{c}} \right)}}{{1 - \frac{{{a^2}}}{{{c^2}}}}} = \frac{{2ac}}{{{a^2} - {c^2}}} \cr & \therefore \,\,\tan \left( {\pi - \frac{{3\pi }}{4}} \right) = \frac{{2ac}}{{{a^2} - {c^2}}}\,\,\,\,{\text{or, }}{a^2} - {c^2} = 2ac. \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section