Question
If in a $$\vartriangle ABC,$$ the values of $$\cot A,\cot B,\cot C$$ are in A.P., then
A.
$$a, b, c$$ are in A.P.
B.
$${a^2},{b^2},{c^2}$$ are in A.P.
C.
$$\cos A,\cos B,\cos C$$ are in A.P.
D.
None of these
Answer :
$${a^2},{b^2},{c^2}$$ are in A.P.
Solution :
$$\cot A,\cot B,\cot C$$ are in A.P.
$$ \Rightarrow \,\,\frac{{{b^2} + {c^2} - {a^2}}}{{2bc \cdot \frac{a}{{2R}}}},\frac{{{c^2} + {a^2} - {b^2}}}{{2ca \cdot \frac{b}{{2R}}}},\frac{{{a^2} + {b^2} - {c^2}}}{{2ab \cdot \frac{c}{{2R}}}}$$ are in A.P.
$$ \Rightarrow \,\,{b^2} + {c^2} - {a^2},{c^2} + {a^2} - {b^2},{a^2} + {b^2} - {c^2}$$ are in A.P.
$$ \Rightarrow \,\, - 2{a^2}, - 2{b^2}, - 2{c^2}$$ are in A.P. (subtracting $${{a^2} + {b^2} + {c^2}}$$ from each).