Question

If in a $$\Delta \,ABC,\cos A\sin B = \sin C$$      then the value of $$\tan \frac{A}{2},$$  if $$3b - 5c = 0,$$   is

A. $$0.5$$  
B. $$0.75$$
C. $$0.33$$
D. $$\frac{1}{{\sqrt 3 }}$$
Answer :   $$0.5$$
Solution :
$$\eqalign{ & \cos A\sin B = \sin C \cr & \Rightarrow \sin \left( {A + B} \right) - \sin \left( {A - B} \right) = 2\sin C \cr & \Rightarrow \sin C = \sin \left( {B - A} \right) \cr & \Rightarrow A + C = B\,\left( {\because A + B = \pi - C} \right) \cr & \therefore B = \frac{\pi }{2} \cr & {\text{Now, }}3b - 5c = 0 \cr & \Rightarrow 3 - 5\sin C = 0 \cr & \therefore \sin C = \frac{3}{5}\,{\text{and}}\,A = \frac{\pi }{2} - C \cr & \Rightarrow \cos A = \sin C \cr & \Rightarrow \frac{{1 - {{\tan }^2}\frac{A}{2}}}{{1 + {{\tan }^2}\frac{A}{2}}} = \frac{3}{5} \cr & \therefore {\tan ^2}\frac{A}{2} = \frac{1}{4} \cr & \Rightarrow \tan \frac{A}{2} = 0.5 \cr} $$

Releted MCQ Question on
Trigonometry >> Properties and Solutons of Triangle

Releted Question 1

If the bisector of the angle $$P$$ of a triangle $$PQR$$  meets $$QR$$  in $$S,$$ then

A. $$QS = SR$$
B. $$QS : SR = PR : PQ$$
C. $$QS : SR = PQ : PR$$
D. None of these
Releted Question 2

From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is

A. $$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B. $$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C. $${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
D. none of these
Releted Question 3

In a triangle $$ABC,$$  angle $$A$$ is greater than angle $$B.$$ If the measures of angles $$A$$ and $$B$$ satisfy the equation $$3\sin x - 4{\sin ^3}x - k = 0, 0 < k < 1,$$       then the measure of angle $$C$$ is

A. $$\frac{\pi }{3}$$
B. $$\frac{\pi }{2}$$
C. $$\frac{2\pi }{3}$$
D. $$\frac{5\pi }{6}$$
Releted Question 4

In a triangle $$ABC,$$  $$\angle B = \frac{\pi }{3}{\text{ and }}\angle C = \frac{\pi }{4}.$$     Let $$D$$ divide $$BC$$  internally in the ratio 1 : 3 then $$\frac{{\sin \angle BAD}}{{\sin \angle CAD}}$$   is equal to

A. $$\frac{1}{{\sqrt 6 }}$$
B. $${\frac{1}{3}}$$
C. $$\frac{1}{{\sqrt 3 }}$$
D. $$\sqrt {\frac{2}{3}} $$

Practice More Releted MCQ Question on
Properties and Solutons of Triangle


Practice More MCQ Question on Maths Section