Question

If $${I_n} = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^n}x\,dx} $$     then what is $${I_n} + {I_{n - 2}}$$   equal to ?

A. $$\frac{1}{n}$$
B. $$\frac{1}{{\left( {n - 1} \right)}}$$  
C. $$\frac{n}{{\left( {n - 1} \right)}}$$
D. $$\frac{1}{{\left( {n - 2} \right)}}$$
Answer :   $$\frac{1}{{\left( {n - 1} \right)}}$$
Solution :
$$\eqalign{ & {\text{Let }}{I_n} = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^n}x\,dx} \cr & {\text{Consider,}} \cr & {I_n} + {I_{n - 2}} = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^n}x\,dx} + \int\limits_0^{\frac{\pi }{4}} {{{\tan }^{n - 2}}x\,dx} \cr & = \int\limits_0^{\frac{\pi }{4}} {{{\tan }^{n - 2}}x\left( {{{\tan }^2}x + 1} \right)dx} \cr & = \int\limits_0^{\frac{\pi }{4}} {{{\sec }^2}x\,{{\tan }^{n - 2}}x\,dx} \cr & {\text{Put }}\tan \,x = t \cr & {\sec ^2}x\,dx = dt \cr & {\text{when }}x = 0{\text{ then }}t = 0{\text{ and when }}x = \frac{\pi }{4},\,t = 1 \cr & \therefore \,{I_n} + {I_{n - 2}} = \int\limits_0^1 {{t^{n - 2}}dt} \cr & = \left. {\frac{{{t^{n - 2 + 1}}}}{{n - 2 + 1}}} \right|_0^1 \cr & = \left. {\frac{{{t^{n - 1}}}}{{n - 1}}} \right|_0^1 \cr & = \frac{1}{{n - 1}}\left[ {1 - 0} \right] \cr & = \frac{1}{{n - 1}} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section