Question

If $${I_1} = \int\limits_0^\pi {x\,f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx} $$       and $${I_2} = \pi \int\limits_0^{\frac{\pi }{2}} {\,f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx,} $$       then :

A. $${I_1} = 2{I_2}$$
B. $$2{I_1} = {I_2}$$
C. $${I_1} = {I_2}$$  
D. $${I_1} + {I_2} = 0$$
Answer :   $${I_1} = {I_2}$$
Solution :
$$\eqalign{ & {\text{Consider }}{I_1} = \int\limits_0^\pi {x\,f\left[ {{{\sin }^3}x + {{\cos }^2}x} \right]dx} \cr & \Rightarrow {I_1} = \int\limits_0^\pi {\left( {\pi - x} \right)f\left[ {{{\sin }^3}\left( {\pi - x} \right) + {{\cos }^2}\left( {\pi - x} \right)} \right]dx} \cr & \Rightarrow {I_1} = \int\limits_0^\pi {\left( {\pi - x} \right)f\left[ {{{\sin }^3}x + {{\cos }^2}x} \right]dx} \cr & \Rightarrow {I_1} = \int\limits_0^\pi {\pi f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx - } \int\limits_0^\pi {\pi f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx} \cr & \Rightarrow {I_1} = \int\limits_0^\pi {\pi f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx - } {I_1} \cr & \Rightarrow 2{I_1} = \int\limits_0^{\frac{\pi }{2}} {\pi \,f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx} \cr & \Rightarrow 2{I_1} = 2\pi \int\limits_0^{\frac{\pi }{2}} {\,f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx} \cr & \Rightarrow {I_1} = \pi \int\limits_0^{\frac{\pi }{2}} {\,f\left( {{{\sin }^3}x + {{\cos }^2}x} \right)dx} \cr & {I_1} = {I_2}\,\,\,\,\,\left( {{\text{By definition of }}{I_2}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section