Question

If $$i = \sqrt { - 1} $$   then $$4 + 5{\left( { - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right)^{334}} - 3{\left( {\frac{1}{2} + i\frac{{\sqrt 3 }}{2}} \right)^{365}}$$       is equal to

A. $$1 - i\sqrt 3 $$
B. $$ - 1 + i\sqrt 3 $$
C. $$\sqrt {3}i $$  
D. $$ - i\sqrt 3 $$
Answer :   $$\sqrt {3}i $$
Solution :
If in a complex number $$a + ib,$$   the ratio $$a : b$$  is $$1:\sqrt 3 ,$$  then it always convert the complex number in $$\omega .$$
$$\eqalign{ & {\text{Since, }}\omega = - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i \cr & \therefore \,4 + 5{\left( { - \frac{1}{2} + \frac{{i\sqrt 3 }}{2}} \right)^{334}} + 3{\left( { - \frac{1}{2} + \frac{{i\sqrt 3 }}{2}} \right)^{365}} \cr & = 4 + 5{\omega ^{334}} + 3{\omega ^{365}} \cr & = 4 + 5 \cdot {\left( {{\omega ^3}} \right)^{111}} \cdot \omega + 3 \cdot {\left( {{\omega ^3}} \right)^{121}} \cdot {\omega ^2} \cr & = 4 + 5\omega + 3{\omega ^2}\,\,\,\,\,\,\,\,\,\left( {\because \,{\omega ^3} = 1} \right) \cr & = 1 + 3 + 2\omega + 3\omega + 3{\omega ^2} \cr & = 1 + 2\omega + 3\left( {1 + \omega + {\omega ^2}} \right) \cr & = 1 + 2\omega + 3 \times 0\,\,\,\,\,\,\,\,\,\,\,\,\left( {\because \,1 + \omega + {\omega ^2} = 0} \right) \cr & = 1 + \left( { - 1 + \sqrt 3 i} \right) \cr & = \sqrt 3 i \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section