Question

If $$I = \int_0^1 {\frac{{x\,dx}}{{8 + {x^3}}}} $$    then the smallest interval in which $$I$$ lies is

A. $$\left( {0,\,\frac{1}{8}} \right)$$
B. $$\left( {0,\,\frac{1}{9}} \right)$$  
C. $$\left( {0,\,\frac{1}{{10}}} \right)$$
D. $$\left( {0,\,\frac{1}{7}} \right)$$
Answer :   $$\left( {0,\,\frac{1}{9}} \right)$$
Solution :
$$\eqalign{ & {\text{Let }}f\left( x \right) = \frac{x}{{8 + {x^3}}} \cr & {\text{Then }}f'\left( x \right) = \frac{{1.\left( {8 + {x^3}} \right) - x\left( {3{x^2}} \right)}}{{{{\left( {8 + {x^3}} \right)}^2}}} = \frac{{8 - 2{x^3}}}{{{{\left( {8 + {x^3}} \right)}^2}}} > 0{\text{ for }}x\, \in \left[ {0,\,1} \right] \cr & \therefore f\left( x \right)\,{\text{is m}}{\text{.i}}{\text{. in }}\left[ {0,\,1} \right].{\text{ So, }}f\left( 0 \right) \leqslant f\left( x \right) \leqslant f\left( 1 \right) \cr & \therefore 0 \leqslant f\left( x \right) \leqslant \frac{1}{{8 + 1}} \cr & \therefore \int_0^1 {0\,dx < } \int_0^1 {f\left( x \right)} dx < \frac{1}{9}\int_0^1 {1\,dx} \cr & \therefore 0 < \int_0^1 {f\left( x \right)} dx < \frac{1}{9} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section