Question

If $$g\left( x \right) = \int_0^x {{{\cos }^4}t\,dt,} $$     then $$g\left( {x + \pi } \right)$$   equals-

A. $$g\left( x \right) + g\left( \pi \right)$$  
B. $$g\left( x \right) - g\left( \pi \right)$$
C. $$g\left( x \right)g\left( \pi \right)$$
D. $$\frac{{g\left( x \right)}}{{g\left( \pi \right)}}$$
Answer :   $$g\left( x \right) + g\left( \pi \right)$$
Solution :
$$\eqalign{ & {\text{Given that }}\,g\left( x \right) = \int\limits_0^x {{{\cos }^4}t\,dt} \cr & \therefore g\left( {x + \pi } \right) = \int\limits_0^{x + \pi } {{{\cos }^4}t\,dt} \cr & = \int\limits_0^\pi {{{\cos }^4}t\,dt} + \int\limits_\pi ^{x + \pi } {{{\cos }^4}t\,dt} \cr & g\left( {x + \pi } \right) = g\left( \pi \right) + I,{\text{ where }}I = \int\limits_\pi ^{x + \pi } {{{\cos }^4}t\,dt} \cr & {\text{Put }}t = \pi + y,\,dt = dy \cr & {\text{Also as }}t \to \pi ,\,y \to 0 \cr & {\text{as }}t \to x + \pi ,\,y \to x \cr & \therefore I = \int\limits_0^x {{{\cos }^4}\left( {\pi + y} \right)\,dy} \cr & = \int\limits_0^x {{{\cos }^4}y\,dy} = \int\limits_0^x {{{\cos }^4}t\,dt} = g\left( x \right) \cr & \therefore g\left( {x + \pi } \right) = g\left( \pi \right) + g\left( x \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section