Question
If $$f\left( x \right) = \frac{x}{{\sin x}}$$ and $$g\left( x \right) = \frac{x}{{\tan x}}$$ where $$0 < x \leqslant 1,$$ then in this interval
A.
both $$f\left( x \right)$$ and $$g\left( x \right)$$ are increasing functions
B.
both $$f\left( x \right)$$ and $$g\left( x \right)$$ are decreasing functions
C.
$$f\left( x \right)$$ is an increasing function
D.
$$g\left( x \right)$$ is an increasing function.
Answer :
$$f\left( x \right)$$ is an increasing function
Solution :
$$\eqalign{
& {\text{We}}\,{\text{have}}\,f\left( x \right) = \frac{x}{{\sin x}},0 < x \leqslant 1 \cr
& \Rightarrow f'\left( x \right) = \frac{{\sin x - x\cos x}}{{{{\sin }^2}x}} \cr
& {\text{where}}\,{\sin ^2}x{\text{ is always }} + ve,{\text{ when }}0 < x \leqslant 1.{\text{ But to check Nr}}{\text{., we again let}} \cr
& h\left( x \right) = \sin x - x\cos x \cr
& \Rightarrow h'\left( x \right) = x\sin x > 0\,{\text{for}}\,0 < x \leqslant 1 \Rightarrow h\left( x \right)\,{\text{is increasing}} \cr
& \Rightarrow h\left( 0 \right) < h\left( x \right),\,{\text{when}}\,0 < x \leqslant 1 \cr
& \Rightarrow 0 < \sin x - x\cos x,\,{\text{when}}\,0 < x \leqslant 1 \cr
& \Rightarrow \sin x - x\cos x > 0,\,{\text{when}}\,0 < x \leqslant 1 \cr
& \Rightarrow f'\left( x \right) > 0,x \in \left( {0,1} \right] \cr
& \Rightarrow f\left( x \right)\,{\text{is}}\,{\text{increasing}}\,{\text{on}}\,\left( {0,1} \right] \cr
& {\text{Again}}\,g\left( x \right) = \frac{x}{{\tan x}} \cr
& \Rightarrow g'\left( x \right) = \frac{{\tan x - x{{\sec }^2}x}}{{{{\tan }^2}x}},\,{\text{when}}\,0 < x \leqslant 1 \cr
& {\text{Here}}\,{\tan ^2}x > 0\,{\text{But}}\,{\text{to check Nr}}{\text{. we consider}} \cr
& p\left( x \right) = \tan x - x{\sec ^2}x \cr
& p'\left( x \right) = {\sec ^2}x - {\sec ^2}x - x.2\sec x.\sec x\tan x \cr
& \Rightarrow p'\left( x \right) = - 2x{\sec ^2}x\tan x < 0\,{\text{for}}\,0 < x \leqslant 1 \cr
& \Rightarrow p\left( x \right)\,{\text{is decreasing, when}}\,0 < x \leqslant 1 \cr
& \Rightarrow p\left( 0 \right) > p\left( x \right) \Rightarrow 0 > \tan x - x{\sec ^2}x \cr
& \therefore g'\left( x \right) < 0 \cr
& {\text{Hence }}g\left( x \right){\text{ is decreasing when}}\,0 < x \leqslant 1. \cr} $$