Question

If from any point $$P,$$ tangents $$PT,\,PT'$$   are drawn to two given circles with centers $$A$$ and $$B$$ respectively; and if $$PN$$  is the perpendicular from $$P$$ on their radical axis, then $$P{T^2} - PT{'^2} = ?$$

A. $$PN.AB$$
B. $$2PN.AB$$  
C. $$4PN.AB$$
D. None of these
Answer :   $$2PN.AB$$
Solution :
Let the two given circles be
$$\eqalign{ & {x^2} + {y^2} + 2{g_1}x + c = 0......\left( 1 \right) \cr & {\text{and }}{x^2} + {y^2} + 2{g_2}x + c = 0......\left( 2 \right) \cr} $$
Their centres are $$A\left( { - {g_1},\,0} \right)$$   and $$B\left( { - {g_2},\,0} \right)$$
$$\therefore \,AB = {g_1} - {g_2}$$
Let $$P$$ be the point $$\left( {{x_1},\,{y_1}} \right).$$  Then,
$$\eqalign{ & PT = \sqrt {x_1^2 + y_1^2 + 2{g_1}{x_1} + c} \,; \cr & PT = \sqrt {x_1^2 + y_1^2 + 2{g_2}{x_1} + c} \cr} $$
Radical axis of $$\left( 1 \right)$$ and $$\left( 2 \right)$$ is $$2\left( {{g_1} - {g_2}} \right)x = 0{\text{ or }}x = 0,$$
$$PN = $$  length of $$ \bot $$ from $$P$$ on radical axis $$ = {x_1}$$
$$\eqalign{ & \therefore \,P{T^2} - PT{'^2} \cr & = \left( {x_1^2 + y_1^2 + 2{g_1}{x_1} + c} \right) - \left( {x_1^2 + y_1^2 + 2{g_2}{x_1} + c} \right) \cr & = 2{x_1}\left( {{g_1} - {g_2}} \right) \cr & = 2PN.AB \cr} $$

Releted MCQ Question on
Geometry >> Circle

Releted Question 1

A square is inscribed in the circle $${x^2} + {y^2} - 2x + 4y + 3 = 0.$$      Its sides are parallel to the coordinate axes. The one vertex of the square is-

A. $$\left( {1 + \sqrt 2 ,\, - 2 } \right)$$
B. $$\left( {1 - \sqrt 2 ,\, - 2 } \right)$$
C. $$\left( {1 - 2 ,\, + \sqrt 2 } \right)$$
D. none of these
Releted Question 2

Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A. $${x^2} + {y^2} - 6x + 4 = 0$$
B. $${x^2} + {y^2} - 3x + 1 = 0$$
C. $${x^2} + {y^2} - 4y + 2 = 0$$
D. none of these
Releted Question 3

The centre of the circle passing through the point (0, 1) and touching the curve $$y = {x^2}$$   at $$\left( {2,\,4} \right)$$  is-

A. $$\left( {\frac{{ - 16}}{5},\,\frac{{27}}{{10}}} \right)$$
B. $$\left( {\frac{{ - 16}}{7},\,\frac{{53}}{{10}}} \right)$$
C. $$\left( {\frac{{ - 16}}{5},\,\frac{{53}}{{10}}} \right)$$
D. none of these
Releted Question 4

The equation of the circle passing through $$\left( {1,\,1} \right)$$  and the points of intersection of $${x^2} + {y^2} + 13x - 3y = 0$$      and $$2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$$      is-

A. $$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$$
B. $$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$$
C. $$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$$
D. none of these

Practice More Releted MCQ Question on
Circle


Practice More MCQ Question on Maths Section