Question

If for all $$x,\,y$$  the function $$f$$ is defined by
$$f\left( x \right) + f\left( y \right) + f\left( x \right).f\left( y \right) = 1$$       and $$f\left( x \right) > 0$$   then :

A. $$f'\left( x \right)$$  does not exist
B. $$f'\left( x \right) = 0$$   for all $$x$$  
C. $$f'\left( 0 \right) < f'\left( 1 \right)$$
D. none of these
Answer :   $$f'\left( x \right) = 0$$   for all $$x$$
Solution :
$$\eqalign{ & {\text{Putting }}x = 0,\,y = 0,\,\,{\text{we get }}2f\left( 0 \right){\text{ + }}{\left\{ {f\left( 0 \right)} \right\}^2}{\text{ = 1}} \cr & \Rightarrow f\left( 0 \right) = \sqrt 2 - 1\,\,\,\,\left\{ {\because \,f\left( 0 \right) > 0} \right\} \cr & {\text{Putting }}y = x,\,\,\,2f\left( x \right) + {\left\{ {f\left( x \right)} \right\}^2} = 1 \cr & {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{. }}x,{\text{ }} \cr & {\text{2}}f'\left( x \right) + 2f\left( x \right).f'\left( x \right) = 0\,\,\,\,\,{\text{or}},\,\,f'\left( x \right)\left\{ {1 + f\left( x \right)} \right\} = 0 \cr & \Rightarrow f'\left( x \right) = 0,\,\,{\text{because }}f\left( x \right) > 0 \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section