Question

If for a real number $$y,\,\left[ y \right]$$  is the greatest integer less than or equal to $$y,$$ then the value of the integral $$\int\limits_{\frac{\pi }{2}}^{\frac{{3\pi }}{2}} {\left[ {2\,\sin \,x} \right]dx} $$    is-

A. $$ - \pi $$
B. $$0$$
C. $$\frac{{ - \pi }}{2}$$  
D. $$\frac{\pi }{2}$$
Answer :   $$\frac{{ - \pi }}{2}$$
Solution :
In the range $$\frac{\pi }{2}$$ to $$\frac{{3\pi }}{2},$$  we have to find the value of $${\left[ {2\,\sin \,x} \right]}$$
\[\left[ {2\,\sin \,x} \right] = \left\{ \begin{array}{l} 2\,\,\,\,\,\,\,\,\,\,{\rm{if }}x = \frac{\pi }{2}\\ 1\,\,\,\,\,\,\,\,\,\,\,{\rm{if }}\frac{\pi }{2} < x \le \frac{{5\pi }}{6}\\ 0\,\,\,\,\,\,\,\,\,\,{\rm{if }}\frac{{5\pi }}{6} < x \le \pi \\ - 1\,\,\,\,\,\,\,{\rm{if }}\pi < x \le \frac{{7\pi }}{6}\\ - 2\,\,\,\,\,\,\,{\rm{if }}\frac{{7\pi }}{6} < x \le \frac{{3\pi }}{2} \end{array} \right.\]
$$\eqalign{ & {\text{Thus}} \cr & I = \int_{\frac{\pi }{2}}^{\frac{{5\pi }}{6}} {1.dx} + \int_{\frac{{5\pi }}{6}}^\pi {0.dx} + \int_\pi ^{\frac{{7\pi }}{6}} {\left( { - 1} \right).dx} + \int_{\frac{{7\pi }}{6}}^{\frac{{3\pi }}{2}} {\left( { - 2} \right).dx} \cr & {\text{or }}I = \left[ {\frac{{5\pi }}{6} - \frac{\pi }{2}} \right] + 0 - 1\left[ {\frac{{7\pi }}{6} - \pi } \right] - 2\left[ {\frac{{3\pi }}{2} - \frac{{7\pi }}{6}} \right] \cr & = \frac{{2\pi }}{6} - \frac{\pi }{6} - \frac{{4\pi }}{6} \cr & = \frac{{ - 3\pi }}{6} \cr & = \frac{{ - \pi }}{2} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section