Question

If $$f\left( z \right) = \frac{{7 - z}}{{1 - {z^2}}} ,$$    where $$z = 1 + 2i,$$   then $$\left| {f\left( z \right)} \right|$$  is equal to :

A. $$\frac{{\left| z \right|}}{2}$$  
B. $${\left| z \right|}$$
C. $$2{\left| z \right|}$$
D. None of these
Answer :   $$\frac{{\left| z \right|}}{2}$$
Solution :
$$\eqalign{ & z = 1 + 2i \cr & \Rightarrow \left| z \right| = \sqrt {1 + 4} = \sqrt 5 \cr & \therefore \,f\left( z \right) = \frac{{7 - z}}{{1 - {z^2}}} = \frac{{7 - 1 - 2i}}{{1 - {{\left( {1 + 2i} \right)}^2}}} \cr & = \,\frac{{6 - 2i}}{{1 - \left( {1 - 4 + 4i} \right)}} = \frac{{6 - 2i}}{{4 - 4i}} = \frac{{3 - i}}{{2 - 2i}} \cr & \Rightarrow \,\left| {f\left( z \right)} \right| = \left| {\frac{{3 - i}}{{2 - 2i}}} \right| = \frac{{\left| {3 - i} \right|}}{{\left| {2 - 2i} \right|}} \cr & = \,\frac{{\sqrt {9 + 1} }}{{\sqrt {4 + 4} }} = \frac{{\sqrt 5 }}{2} = \frac{{\left| z \right|}}{2} \cr} $$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section