Question

If $$f\left( x \right) = x - {x^2} + {x^3} - {x^4} + .....\,{\text{to }}\infty {\text{ for }}\left| x \right| < 1,$$          then $${f^{ - 1}}\left( x \right) = ?$$

A. $$\frac{x}{{1 + x}}$$
B. $$\frac{x}{{1 - x}}$$  
C. $$\frac{{1 - x}}{x}$$
D. $$\frac{1}{x}$$
Answer :   $$\frac{x}{{1 - x}}$$
Solution :
$$\eqalign{ & {\text{Given }}f\left( x \right) = x - {x^2} + {x^3} - {x^4} + .....\,{\text{to }}\infty \cr & \Rightarrow y = \frac{x}{{1 + x}}\,\,\,\,\,\left( {{\text{Infinite}}\,{\text{G}}{\text{.P}}{\text{.}}} \right) \cr & \Rightarrow y + xy = x \cr & \Rightarrow y = x\left( {1 - y} \right) \cr & \Rightarrow x = \frac{y}{{1 - y}} \cr & \Rightarrow {f^{ - 1}}\left( y \right) = \frac{y}{{1 - y}} \cr & \Rightarrow {f^{ - 1}}\left( x \right) = \frac{x}{{1 - x}} \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section