Question
If $$f\left( x \right) = x,\,x \leqslant 1,$$ and $$f\left( x \right) = {x^2} + bx + c,\,x > 1,$$ and $$f'\left( x \right)$$ exists finitely for all $$x\, \in \,R$$ then :
A.
$$b = - 1,\,c\, \in \,R$$
B.
$$c = 1,\,b\, \in \,R$$
C.
$$b=1,\,c=-1$$
D.
$$b=-1,\,c=1$$
Answer :
$$b=-1,\,c=1$$
Solution :
$$f\left( x \right)$$ is differentiable at $$x=1$$ also.
$$\eqalign{
& \therefore \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 - h} \right) - f\left( 1 \right)}}{{ - h}} \cr
& {\text{Now,}}\,\,\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h} \right)}^2} + b\left( {1 + h} \right) + c - 1}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2} + \left( {2 + b} \right)h + b + c}}{h}. \cr
& \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \frac{{1 - h - 1}}{{ - h}} = 1. \cr} $$
The two limits can be equal if $$2+b=1,\,b+c=0$$