Question

If $$f\left( x \right) = x,\,x \leqslant 1,$$    and $$f\left( x \right) = {x^2} + bx + c,\,x > 1,$$       and $$f'\left( x \right)$$  exists finitely for all $$x\, \in \,R$$   then :

A. $$b = - 1,\,c\, \in \,R$$
B. $$c = 1,\,b\, \in \,R$$
C. $$b=1,\,c=-1$$
D. $$b=-1,\,c=1$$  
Answer :   $$b=-1,\,c=1$$
Solution :
$$f\left( x \right)$$  is differentiable at $$x=1$$  also.
$$\eqalign{ & \therefore \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 - h} \right) - f\left( 1 \right)}}{{ - h}} \cr & {\text{Now,}}\,\,\mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h} \right)}^2} + b\left( {1 + h} \right) + c - 1}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2} + \left( {2 + b} \right)h + b + c}}{h}. \cr & \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {1 + h} \right) - f\left( 1 \right)}}{{ - h}} = \mathop {\lim }\limits_{h \to 0} \frac{{1 - h - 1}}{{ - h}} = 1. \cr} $$
The two limits can be equal if $$2+b=1,\,b+c=0$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section