Question

If \[f\left( x \right) = \left\{ \begin{array}{l} \frac{{x\,\log \,\cos \,x}}{{\log \left( {1 + {x^2}} \right)}},\,\,\,\,\,x \ne 0\\ \,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 0 \end{array} \right.\]       then $$f\left( x \right)$$  is :

A. continuous as well as differentiable at $$x = 0$$  
B. continuous but not differentiable at $$x = 0$$
C. differentiable but not continuous at $$x = 0$$
D. neither continuous nor differentiable at $$x = 0$$
Answer :   continuous as well as differentiable at $$x = 0$$
Solution :
We have,
$$\eqalign{ & {\text{L}}f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 - h} \right) - f\left( 0 \right)}}{{ - h}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - h\,\log \,\cos \,h}}{{ - h\,\log \left( {1 + {h^2}} \right)}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\log \,\cos \,h}}{{\log \left( {1 + {h^2}} \right)}}\,\,\,\,\,\,\,\,\left( {\frac{0}{0}{\text{form}}} \right) \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - \tan \,h}}{{\frac{{2h}}{{\left( {1 + {h^2}} \right)}}}} \cr & = - \frac{1}{2} \cr & {\text{R}}f'\left( 0 \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {0 + h} \right) - f\left( 0 \right)}}{h} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{h\,\log \,\cos \,h}}{{h\,\log \left( {1 + {h^2}} \right)}} \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{\log \,\cos \,h}}{{\log \left( {1 + {h^2}} \right)}}\,\,\,\,\,\,\,\,\left( {\frac{0}{0}{\text{form}}} \right) \cr & = \mathop {\lim }\limits_{h \to 0} \frac{{ - \tan \,h}}{{\frac{{2h}}{{\left( {1 + {h^2}} \right)}}}} \cr & = \frac{{ - 1}}{2} \cr} $$
Since $${\text{L}}f'\left( 0 \right){\text{ = R}}f'\left( 0 \right),$$    therefore $$f\left( x \right)$$  is differentiable at $$x = 0.$$
Since differentiability $$ \Rightarrow $$ continutity, therefore $$f\left( x \right)$$  iscontinuous at $$x = 0.$$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section