Question

If $$f\left( x \right) = \frac{{\sin \left( {{e^{x - 2}} - 1} \right)}}{{\ln \left( {x - 1} \right)}},$$     then $$\mathop {\lim }\limits_{x \to 2} f\left( x \right)$$   is equal to :

A. $$ - 2$$
B. $$ - 1$$
C. $$0$$
D. $$1$$  
Answer :   $$1$$
Solution :
$$\eqalign{ & f\left( x \right) = \frac{{\sin \left( {{e^{x - 2}} - 1} \right)}}{{\ln \left( {x - 1} \right)}} \cr & \mathop {\lim }\limits_{x \to 2} \frac{{\sin \left( {{e^{x - 2}} - 1} \right)}}{{\ln \left( {x - 1} \right)}} = L \cr} $$
It is $$\frac{0}{0}$$ (undefined) condition so using L'hospital's rule
$$\eqalign{ & \Rightarrow L = \mathop {\lim }\limits_{x \to 2} \left[ {\frac{{\left\{ {\sin \left( {{e^{x - 2}} - 1} \right)} \right\}}}{{\left\{ {\ln \left( {x - 1} \right)} \right\}}}} \right] \cr & \Rightarrow L = \mathop {\lim }\limits_{x \to 2} \frac{{\cos \left( {{e^{x - 2}} - 1} \right).{e^{\left( {x - 2} \right)}}}}{{\frac{1}{{\left( {x - 1} \right)}}}} \cr & \Rightarrow L = \mathop {\lim }\limits_{x \to 2} \cos \left( {{e^{2 - 2}} - 1} \right){e^{2 - 2}}.\left( {2 - 1} \right) \cr & \Rightarrow L = \cos \left( 0 \right){e^0}.1 \cr & \Rightarrow L = 1 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section