Question

If $$f\left( x \right) = {\sin ^2}x + {\sin ^2}\left( {x + \frac{\pi }{3}} \right) + \cos \,x\,\cos \left( {x + \frac{\pi }{3}} \right)$$          and $$g\left( {\frac{5}{4}} \right) = 1,$$   then $$gof\left( x \right) = ?$$

A. $$1$$  
B. $$0$$
C. $$\sin \,x$$
D. none
Answer :   $$1$$
Solution :
$$\eqalign{ & {\text{We have,}} \cr & f\left( x \right) = {\sin ^2}x + {\sin ^2}\left( {x + \frac{\pi }{3}} \right) + \cos \,x\,\cos \left( {x + \frac{\pi }{3}} \right) \cr & = \frac{{1 - \cos \,2x}}{2} + \frac{{1 - \cos \left( {2x + \frac{{2\pi }}{3}} \right)}}{2} + \frac{1}{2}\left\{ {2\,\cos \,x\,\cos \left( {x + \frac{\pi }{3}} \right)\,} \right\} \cr & = \frac{1}{2}\left[ {\frac{5}{2} - \left\{ {\cos \,2x + \cos \left( {2x + \frac{{2\pi }}{3}} \right)} \right\} + \cos \left( {2x + \frac{\pi }{3}} \right)} \right] \cr & = \frac{1}{2}\left[ {\frac{5}{2} - 2\,\cos \left( {2x + \frac{\pi }{3}} \right)\cos \frac{\pi }{3} + \cos \left( {2x + \frac{\pi }{3}} \right)} \right] \cr & = \frac{5}{4}{\text{ for all }}x \cr & gof\left( x \right) = g\left( {f\left( x \right)} \right) = g\left( {\frac{5}{4}} \right) = 1\,\,\,\left[ {\because \,g\left( {\frac{5}{4}} \right) = 1\left( {{\text{given}}} \right)} \right] \cr & {\text{Hence, }}gof\left( x \right) = 1,{\text{ for all }}x. \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section