Question

If \[f\left( x \right) = \left\{ \begin{array}{l} {x^3} + 1,\,\,\,x < 0\\ {x^2} + 1,\,\,\,x \ge 0 \end{array} \right.,\,g\left( x \right) = \left\{ \begin{array}{l} {\left( {x - 1} \right)^{\frac{1}{3}}},\,\,\,x < 1\\ {\left( {x - 1} \right)^{\frac{1}{2}}},\,\,\,x \ge 1 \end{array} \right.,\]           then $$\left( {gof} \right)\left( x \right)$$   is equal to :

A. $$x,\,\forall \,x\, \in \,R$$  
B. $$x - 1,\,\forall \,x\, \in R$$
C. $$x + 1,\,\forall \,x\, \in R$$
D. none of these
Answer :   $$x,\,\forall \,x\, \in \,R$$
Solution :
$$\eqalign{ & {\text{Let }}x < 0 \cr & \therefore \,\left( {gof} \right)\left( x \right) = g\left( {f\left( x \right)} \right) \cr & = g\left( {{x^3} + 1} \right) \cr & = {\left[ {\left( {{x^3} + 1} \right) - 1} \right]^{\frac{1}{3}}}\,\,\left( {\because x < 0 \Rightarrow {x^3} + 1 < 1} \right) \cr & = {\left( {{x^3}} \right)^{\frac{1}{3}}} \cr & = x \cr & {\text{Let }}x \geqslant 0 \cr & \therefore \,\left( {gof} \right)\left( x \right) = g\left( {f\left( x \right)} \right) \cr & = g\left( {{x^2} + 1} \right) \cr & = {\left( {\left( {{x^2} + 1} \right) - 1} \right)^{\frac{1}{2}}}\,\,\left( {\because x \geqslant 0 \Rightarrow {x^2} + 1 \geqslant 1} \right) \cr & = {\left( {{x^2}} \right)^{\frac{1}{2}}} \cr & = \left| x \right| \cr & = x\,\,\,\,\,\,\left( {\because x \geqslant 0} \right) \cr & \therefore \,\left( {gof} \right)\left( x \right) = x,\,\forall \,x\, \in \,R \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section