Question
If \[f\left( x \right) = \left\{ \begin{array}{l}
{x^3} + 1,\,\,\,x < 0\\
{x^2} + 1,\,\,\,x \ge 0
\end{array} \right.,\,g\left( x \right) = \left\{ \begin{array}{l}
{\left( {x - 1} \right)^{\frac{1}{3}}},\,\,\,x < 1\\
{\left( {x - 1} \right)^{\frac{1}{2}}},\,\,\,x \ge 1
\end{array} \right.,\] then $$\left( {gof} \right)\left( x \right)$$ is equal to :
A.
$$x,\,\forall \,x\, \in \,R$$
B.
$$x - 1,\,\forall \,x\, \in R$$
C.
$$x + 1,\,\forall \,x\, \in R$$
D.
none of these
Answer :
$$x,\,\forall \,x\, \in \,R$$
Solution :
$$\eqalign{
& {\text{Let }}x < 0 \cr
& \therefore \,\left( {gof} \right)\left( x \right) = g\left( {f\left( x \right)} \right) \cr
& = g\left( {{x^3} + 1} \right) \cr
& = {\left[ {\left( {{x^3} + 1} \right) - 1} \right]^{\frac{1}{3}}}\,\,\left( {\because x < 0 \Rightarrow {x^3} + 1 < 1} \right) \cr
& = {\left( {{x^3}} \right)^{\frac{1}{3}}} \cr
& = x \cr
& {\text{Let }}x \geqslant 0 \cr
& \therefore \,\left( {gof} \right)\left( x \right) = g\left( {f\left( x \right)} \right) \cr
& = g\left( {{x^2} + 1} \right) \cr
& = {\left( {\left( {{x^2} + 1} \right) - 1} \right)^{\frac{1}{2}}}\,\,\left( {\because x \geqslant 0 \Rightarrow {x^2} + 1 \geqslant 1} \right) \cr
& = {\left( {{x^2}} \right)^{\frac{1}{2}}} \cr
& = \left| x \right| \cr
& = x\,\,\,\,\,\,\left( {\because x \geqslant 0} \right) \cr
& \therefore \,\left( {gof} \right)\left( x \right) = x,\,\forall \,x\, \in \,R \cr} $$