Question

If $$f\left( x \right)$$  is an invertible function and $$g\left( x \right) = 2f\left( x \right) + 5,$$    then the value of $${g^{ - 1}}\left( x \right)$$  is :

A. $$2{f^{ - 1}}\left( x \right) - 5$$
B. $$\frac{1}{{2{f^{ - 1}}\left( x \right) + 5}}$$
C. $$\frac{1}{2}{f^{ - 1}}\left( x \right) + 5$$
D. $${f^{ - 1}}\left( {\frac{{x - 5}}{2}} \right)$$  
Answer :   $${f^{ - 1}}\left( {\frac{{x - 5}}{2}} \right)$$
Solution :
Replacing $$x$$ by $${g^{ - 1}}\left( x \right),$$  we get $$x = 2f\left( {{g^{ - 1}}\left( x \right)} \right) + 5$$
$$\eqalign{ & \therefore \,f\left( {{g^{ - 1}}\left( x \right)} \right) = \frac{{x - 5}}{2} \cr & \therefore \,{g^{ - 1}}\left( x \right) = {f^{ - 1}}\left( {\frac{{x - 5}}{2}} \right) \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section