Question

If $$f\left( x \right) = \int_0^{\sin \,x} {{{\cos }^{ - 1}}t\,dt} + \int_0^{\cos \,x} {{{\sin }^{ - 1}}t\,dt,\,0 < x < \frac{\pi }{2},} $$           then $$f\left( {\frac{\pi }{4}} \right)$$  is :

A. $$\frac{\pi }{{\sqrt 2 }}$$
B. $$1 + \frac{\pi }{{2\sqrt 2 }}$$  
C. 1
D. none of these
Answer :   $$1 + \frac{\pi }{{2\sqrt 2 }}$$
Solution :
$$\eqalign{ & f\left( x \right) = \int_0^{\sin \,x} {\left( {\frac{\pi }{2} - {{\sin }^{ - 1}}t} \right)\,dt} + \int_0^{\cos \,x} {\left( {\frac{\pi }{2} - {{\cos }^{ - 1}}t} \right)\,dt} \cr & = \frac{\pi }{2}\left[ t \right]_0^{\sin \,x} - \int_0^{\sin \,x} {{{\sin }^{ - 1}}} t\,dt + \frac{\pi }{2}\left[ t \right]_0^{\cos \,x} - \int_0^{\cos \,x} {{{\cos }^{ - 1}}t\,dt} \cr & = \frac{\pi }{2}\left( {\sin \,x + \cos \,x} \right) - \int_0^{\sin \,x} {\sin {\,^{ - 1}}t\,dt} - \int_0^{\cos \,x} {{{\cos }^{ - 1}}t\,dt} \cr & \int_0^{\sin \,x} {{{\sin }^{ - 1}}t\,dt} = \int_0^x {\theta \cos \,\theta \,d\theta \,\,\,\,\,\,\,\,\,\,\,\,\left( {{\text{putting }}t = \sin \,\theta } \right)} \cr & = \left[ {\theta \sin \,\theta } \right]_0^x - \int_0^x {\sin \,\theta \,d\theta } \cr & = x\sin \,x + \left[ {\cos \,\theta } \right]_0^x \cr & = x\sin \,x + \cos \,x - 1 \cr & \int_0^{\cos \,x} {{{\cos }^{ - 1}}t\,dt} = \int_0^x { - \phi \sin \,\phi \,d\phi \,\,\,\,\,\,\,\,\,\left( {{\text{putting }}t = \cos \,\phi } \right)} \cr & = \left[ {\phi \cos \,\phi } \right]_0^x - \int_0^x {\cos \phi \,d\phi } \cr & = x\cos \,x - \left[ {\sin \,\phi } \right]_0^x \cr & = x\cos \,x - \sin \,x \cr & \therefore f\left( x \right) = \frac{\pi }{2}\left( {\sin \,x + \cos \,x} \right) - x\sin \,x - \cos \,x + 1 - x\cos \,x + \sin \,x \cr & \therefore f\left( {\frac{\pi }{4}} \right) = \frac{\pi }{2}.\sqrt 2 - \frac{\pi }{4}.\frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }} + 1 - \frac{\pi }{4}.\frac{1}{{\sqrt 2 }} + \frac{1}{{\sqrt 2 }} = 1 + \frac{\pi }{{2\sqrt 2 }} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section