Question

If \[f\left( x \right) = \left\{ \begin{array}{l} {e^{\cos \,x}}\sin \,x,\,{\rm{for }}\left| x \right| \le 2\\ 2,\,\,\,\,\,\,\,\,\,\,{\rm{otherwise}} \end{array} \right.,\]       then $$\int\limits_{ - 2}^3 {f\left( x \right)dx} = ?$$

A. $$0$$
B. $$1$$
C. $$2$$  
D. $$3$$
Answer :   $$2$$
Solution :
\[\begin{array}{l} {\rm{If }}f\left( x \right) = \left\{ \begin{array}{l} {e^{\cos \,x}}\sin \,x,\,{\rm{for }}\left| x \right| \le 2\\ 2,\,\,\,\,\,\,\,\,\,\,{\rm{otherwise}} \end{array} \right\}\\ = \left\{ \begin{array}{l} {e^{\cos \,x}}\sin \,x,\,{\rm{for }} - 2 \le x \le 2\\ 2,\,\,\,\,\,\,\,\,\,\,{\rm{otherwise}} \end{array} \right\} \end{array}\]
$$\eqalign{ & \int\limits_{ - 2}^3 {f\left( x \right)} dx = \int\limits_{ - 2}^2 {f\left( x \right)} dx + \int\limits_2^3 {f\left( x \right)} dx \cr & = \int\limits_{ - 2}^2 {{e^{\cos \,x}}\sin \,x\,dx} + \int\limits_2^3 {2\,dx} = 0 + 2\left[ x \right]_2^3 \cr & \left[ {\because {e^{\cos \,x}}\sin \,x\,{\text{ is an odd function}}{\text{.}}} \right] \cr & = 2\left[ {3 - 2} \right] = 2 \cr & \therefore \int\limits_{ - 2}^3 {f\left( x \right)} dx = 2 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section