Question

If $$f\left( x \right) = A\,\sin \left( {\frac{{\pi x}}{2}} \right) + B$$      and $$f'\left( {\frac{1}{2}} \right) = \sqrt 2 $$    and $$\int_0^1 {f\left( x \right)dx = \frac{{2A}}{\pi },} $$     then what is the value of $$B\,?$$

A. $$\frac{2}{\pi }$$
B. $$\frac{4}{\pi }$$
C. $$0$$  
D. $$1$$
Answer :   $$0$$
Solution :
Given function $$f\left( x \right) = A\,\sin \left( {\frac{{\pi x}}{2}} \right) + B$$
Differentiating w.r.t. $$x$$
$$\eqalign{ & f'\left( x \right) = A\,\cos \left( {\frac{{\pi x}}{2}} \right).\frac{\pi }{2} \cr & f'\left( {\frac{1}{2}} \right) = \sqrt 2 = A\left( {\cos \frac{\pi }{4}} \right)\frac{\pi }{2} = A.\frac{1}{{\sqrt 2 }}.\frac{\pi }{2} \cr & \Rightarrow A = \frac{{\left( {\sqrt 2 \times \sqrt 2 } \right) \times 2}}{\pi } = \frac{4}{\pi } \cr & {\text{Now, }}\int_0^1 {f\left( x \right)dx = \frac{{2A}}{\pi }} \cr & \Rightarrow \int_0^1 {\left\{ {A\,\sin \left( {\frac{{\pi x}}{2}} \right) + B} \right\}dx = \frac{{2 \times 4}}{{{\pi ^2}}}} \cr & \Rightarrow \left[ { - A\,\cos \frac{{\pi x}}{2}.\frac{2}{\pi } + Bx} \right]_0^1 = \frac{8}{{{\pi ^2}}} \cr & \Rightarrow - \frac{4}{\pi }.\frac{2}{\pi }\cos \frac{\pi }{2} + B + \frac{4}{\pi }.\frac{2}{\pi }\cos \,0 = \frac{8}{{{\pi ^2}}} \cr & \Rightarrow B + \frac{8}{{{\pi ^2}}} = \frac{8}{{{\pi ^2}}} \cr & \Rightarrow B = 0 \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section