If $$f\left( x \right)$$ and $$\phi \left( x \right)$$ are continuous functions on the interval $$\left[ {0,\,4} \right]$$ satisfying $$f\left( x \right) = f\left( {4 - x} \right),\,\phi \left( x \right) + \phi \left( {4 - x} \right) = 3$$  and $$\int\limits_0^4 {f\left( x \right)dx = 2} ,$$ then $$\int\limits_0^4 {f\left( x \right)\phi \left( x \right)dx} = ?$$
A.
3
B.
6
C.
2
D.
None of these
Answer :
3
Solution :
$$\eqalign{
& {\text{Let }}I = \int\limits_0^4 {f\left( x \right)\phi \left( x \right)dx} \cr
& \Rightarrow I = \int\limits_0^4 {f\left( {4 - x} \right)\phi \left( {4 - x} \right)dx} \cr
& \Rightarrow I = \int\limits_0^4 {f\left( x \right).\left( {3 - \phi \left( x \right)} \right)dx} \cr
& \left[ {\because \,f\left( x \right) = f\left( {4 - x} \right){\text{ and }}\phi \left( x \right) + \phi \left( {4 - x} \right) = 3} \right] \cr
& \Rightarrow I = 3\int\limits_0^4 {f\left( x \right)dx - I} \cr
& \Rightarrow 2I = 3.2 \cr
& \therefore I = 3 \cr} $$
Releted MCQ Question on Calculus >> Definite Integration
Releted Question 1
The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$ is-