Question

If $$f\left( x \right) = \left( {ab - {b^2} - 2} \right)x + \int_0^x {\left( {{{\cos }^4}\,\theta + {{\sin }^4}\theta \,} \right)} d\theta $$          is a decreasing function of $$x$$ for all $$x\, \in \,R$$   and $$b\, \in \,R,\,b$$   being independent of $$x,$$ then :

A. $$a\, \in \,\left( {0,\,\sqrt 6 } \right)$$
B. $$a\, \in \,\left( { - \sqrt 6 ,\,\sqrt 6 } \right)$$  
C. $$a\, \in \,\left( { - \sqrt 6 ,\,0} \right)$$
D. none of these
Answer :   $$a\, \in \,\left( { - \sqrt 6 ,\,\sqrt 6 } \right)$$
Solution :
$$\eqalign{ & f'\left( x \right) = ab - {b^2} - 2 + {\cos ^4}x + {\sin ^4}x < 0 \cr & \Rightarrow ab - {b^2} - 2 + {\left( {{{\cos }^2}x + {{\sin }^2}x} \right)^2} - 2{\sin ^2}x.\,{\cos ^2}x < 0 \cr & {\text{or, }}ab - {b^2} - 1 < \frac{1}{2}{\sin ^2}2x < \frac{1}{2} \cr & {\text{or, }}2ab - 2{b^2} - 2 < 1 \cr & {\text{or, }}2{b^2} - 2ab + 3 > 0 \cr} $$
This is true for any $$b\, \in \,R$$   if $$D < 0,$$  that is, $$4{a^2} - 4.2.3 < 0$$
$${\text{or, }}{a^2} < 6\,\,\,\,\,{\text{or, }} - \sqrt 6 < a < \sqrt 6 $$

Releted MCQ Question on
Calculus >> Application of Derivatives

Releted Question 1

If  $$a + b + c = 0,$$    then the quadratic equation $$3a{x^2}+ 2bx + c = 0$$     has

A. at least one root in $$\left[ {0, 1} \right]$$
B. one root in $$\left[ {2, 3} \right]$$  and the other in $$\left[ { - 2, - 1} \right]$$
C. imaginary roots
D. none of these
Releted Question 2

$$AB$$  is a diameter of a circle and $$C$$ is any point on the circumference of the circle. Then

A. the area of $$\Delta ABC$$  is maximum when it is isosceles
B. the area of $$\Delta ABC$$  is minimum when it is isosceles
C. the perimeter of $$\Delta ABC$$  is minimum when it is isosceles
D. none of these
Releted Question 3

The normal to the curve $$x = a\left( {\cos \theta + \theta \sin \theta } \right),y = a\left( {\sin \theta - \theta \cos \theta } \right)$$        at any point $$'\theta '$$ is such that

A. it makes a constant angle with the $$x - $$axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these
Releted Question 4

If $$y = a\ln x + b{x^2} + x$$     has its extremum values at $$x = - 1$$  and $$x = 2,$$  then

A. $$a = 2,b = - 1$$
B. $$a = 2,b = - \frac{1}{2}$$
C. $$a = - 2,b = \frac{1}{2}$$
D. none of these

Practice More Releted MCQ Question on
Application of Derivatives


Practice More MCQ Question on Maths Section