Question

If $$f\left( x \right) = a + bx + c{x^2},$$     where $$c > 0$$  and $${b^2} - 4ac < 0,$$    then the area enclosed by the coordinate axes, the line $$x = 2$$  and the curve $$y = f\left( x \right)$$   is given by :

A. $$\frac{1}{3}\left\{ {4f\left( 1 \right) + f\left( 2 \right)} \right\}$$
B. $$\frac{1}{2}\left\{ {f\left( 0 \right) + 4f\left( 1 \right) + f\left( 2 \right)} \right\}$$
C. $$\frac{1}{2}\left\{ {f\left( 0 \right) + 4f\left( 1 \right)} \right\}$$
D. $$\frac{1}{3}\left\{ {f\left( 0 \right) + 4f\left( 1 \right) + f\left( 2 \right)} \right\}$$  
Answer :   $$\frac{1}{3}\left\{ {f\left( 0 \right) + 4f\left( 1 \right) + f\left( 2 \right)} \right\}$$
Solution :
Application of Integration mcq solution image
Area of $$OABL = \int_0^2 {y\,dx} $$
$$\eqalign{ & = \int_0^2 {\left( {a + bx + c{x^2}} \right)} dx \cr & = 2a + 2b + \frac{8}{3}c \cr & = \frac{1}{3}\left[ {6a + 6b + 8c} \right]......\left( {\text{i}} \right) \cr & {\text{But, }}f\left( x \right) = a + bx + c{x^2}\,; \cr & f\left( 0 \right) = a, \cr & f\left( 1 \right) = a + b + c \cr & f\left( 2 \right) = a + 2b + 4c \cr & \Rightarrow \frac{1}{3}\left\{ {f\left( 0 \right) + 4f\left( 1 \right) + f\left( 2 \right)} \right\} \cr & = \frac{1}{3}\left\{ {a + 4\left( {a + b + c} \right) + \left( {a + 2b + 4c} \right)} \right\} \cr & = \frac{1}{3}\left\{ {6a + 6b + 8c} \right\} \cr} $$

Releted MCQ Question on
Calculus >> Application of Integration

Releted Question 1

The area bounded by the curves $$y = f\left( x \right),$$   the $$x$$-axis and the ordinates $$x = 1$$  and $$x = b$$  is $$\left( {b - 1} \right)\sin \left( {3b + 4} \right).$$     Then $$f\left( x \right)$$  is-

A. $$\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
B. $$\sin \,\left( {3x + 4} \right)$$
C. $$\sin \,\left( {3x + 4} \right) + 3\left( {x - 1} \right)\cos \left( {3x + 4} \right)$$
D. none of these
Releted Question 2

The area bounded by the curves $$y = \left| x \right| - 1$$   and $$y = - \left| x \right| + 1$$   is-

A. $$1$$
B. $$2$$
C. $$2\sqrt 2 $$
D. $$4$$
Releted Question 3

The area bounded by the curves $$y = \sqrt x ,\,2y + 3 = x$$    and $$x$$-axis in the 1st quadrant is-

A. $$9$$
B. $$\frac{{27}}{4}$$
C. $$36$$
D. $$18$$
Releted Question 4

The area enclosed between the curves $$y = a{x^2}$$   and $$x = a{y^2}\left( {a > 0} \right)$$    is 1 sq. unit, then the value of $$a$$ is-

A. $$\frac{1}{{\sqrt 3 }}$$
B. $$\frac{1}{2}$$
C. $$1$$
D. $$\frac{1}{3}$$

Practice More Releted MCQ Question on
Application of Integration


Practice More MCQ Question on Maths Section