Question

If $$f\left( x \right) = a + bx + c{x^2},$$     then what is $$\int_0^1 {f\left( x \right)dx} $$   equal to ?

A. $$\frac{{\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{6}$$  
B. $$\frac{{\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{3}$$
C. $$\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]$$
D. $$\frac{{\left[ {f\left( 0 \right) + 2f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{6}$$
Answer :   $$\frac{{\left[ {f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)} \right]}}{6}$$
Solution :
$$\eqalign{ & {\text{Given, }}f\left( x \right) = a + bx + c{x^2} \cr & \therefore \,\int_0^1 {f\left( x \right)dx} \cr & = \int_0^1 {\left( {a + bx + c{x^2}} \right)dx} \cr & = \left[ {ax + \frac{{b{x^2}}}{2} + \frac{{c{x^3}}}{3}} \right]_0^1 \cr & = a + \frac{b}{2} + \frac{c}{3}......\left( {\text{i}} \right) \cr & {\text{Here, }}f\left( 0 \right) = a,\,f\left( {\frac{1}{2}} \right) = a + \frac{b}{2} + \frac{c}{4}{\text{ and }}f\left( 1 \right) = a + b + c \cr & {\text{Now, }}\frac{{f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)}}{6} \cr & = \frac{{a + 4\left( {a + \frac{b}{2} + \frac{c}{4}} \right) + a + b + c}}{6} \cr & = \frac{{a + 4\left( {\frac{{4a + 2b + c}}{4}} \right) + a + b + c}}{6} \cr & = \frac{{a + 4a + 2b + c + a + b + c}}{6} \cr & = \frac{{6a + 3b + 2c}}{6} \cr & = a + \frac{b}{2} + \frac{c}{3} \cr & \therefore {\text{ From equations }}\left( {\text{i}} \right)\,{\text{and }}\left( {{\text{ii}}} \right),{\text{ we get}} \cr & \int_0^1 {f\left( x \right)dx} = \frac{{f\left( 0 \right) + 4f\left( {\frac{1}{2}} \right) + f\left( 1 \right)}}{6} \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section