Question

If $$f\left( x \right) = \frac{1}{{1 - x}},$$   then the points of discontinuity of the function $$f\left[ {f\left\{ {f\left( x \right)} \right\}} \right]$$   are :

A. $$\left\{ {0,\, - 1} \right\}$$
B. $$\left\{ {0,\,1} \right\}$$  
C. $$\left\{ {1,\, - 1} \right\}$$
D. none of these
Answer :   $$\left\{ {0,\,1} \right\}$$
Solution :
We have, $$f\left( x \right) = \frac{1}{{1 - x}}$$
As at $$x = 1,\,f\left( x \right)$$   is not defined, $$x = 1$$  is a point of discontinuity of $$f\left( x \right).$$
If $$x \ne 1,\,f\left[ {f\left( x \right)} \right] = f\left( {\frac{1}{{1 - x}}} \right) = \frac{1}{{1 - \frac{1}{{\left( {1 - x} \right)}}}} = \frac{{x - 1}}{x}$$
$$\therefore \,x = 0,\,1$$   are points of discontinuity of $$f\left[ {f\left( x \right)} \right].$$
If $$x \ne 0,\,x \ne 1$$
$$f\left[ {f\left\{ {f\left( x \right)} \right\}} \right] = f\left( {\frac{{x - 1}}{x}} \right) = \frac{1}{{1 - \frac{{\left( {x - 1} \right)}}{x}}} = x$$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section