Question

If $$f:R \to R$$   is a function defined by $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,$$     where $$\left[ x \right]$$ denotes the greatest integer function, then $$f$$ is,

A. continuous for every real $$x.$$  
B. discontinuous only at $$x = 0$$
C. discontinuous only at non-zero integral values of $$x.$$
D. continuous only at $$x = 0.$$
Answer :   continuous for every real $$x.$$
Solution :
$${\text{Let }}f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi $$
Doubtful points are $$x = n,\,\,n \in I$$
$$\eqalign{ & {\text{L}}{\text{.H}}{\text{.L}}{\text{.}} = \mathop {\lim }\limits_{x \to {n^ - }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {n - 1} \right)\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr} $$
($$\because \,\left[ x \right]$$ is the greatest integer function)
$$\eqalign{ & {\text{R}}{\text{.H}}{\text{.L}}{\text{.}} = \mathop {\lim }\limits_{x \to {n^ + }} \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = n\,\cos \left( {\frac{{2n - 1}}{2}} \right)\pi = 0 \cr} $$
Now, value of the function at $$x=n$$  is $$f\left( n \right) = 0$$
Since, L.H.L. $$=$$ R.H.L. $$ = f\left( n \right)$$
$$\therefore f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)$$     is continuous for every real $$x.$$

Releted MCQ Question on
Calculus >> Continuity

Releted Question 1

For a real number $$y,$$ let $$\left[ y \right]$$ denotes the greatest integer less than or equal to $$y:$$ Then the function $$f\left( x \right) = \frac{{\tan \left( {\pi \left[ {x - \pi } \right]} \right)}}{{1 + {{\left[ x \right]}^2}}}$$     is-

A. discontinuous at some $$x$$
B. continuous at all $$x,$$ but the derivative $$f'\left( x \right)$$  does not exist for some $$x$$
C. $$f'\left( x \right)$$  exists for all $$x,$$ but the second derivative $$f'\left( x \right)$$  does not exist for some $$x$$
D. $$f'\left( x \right)$$  exists for all $$x$$
Releted Question 2

The function $$f\left( x \right) = \frac{{\ln \left( {1 + ax} \right) - \ln \left( {1 - bx} \right)}}{x}$$       is not defined at $$x = 0.$$  The value which should be assigned to $$f$$ at $$x = 0,$$  so that it is continuous at $$x =0,$$  is-

A. $$a-b$$
B. $$a+b$$
C. $$\ln a - \ln b$$
D. none of these
Releted Question 3

The function $$f\left( x \right) = \left[ x \right]\cos \left( {\frac{{2x - 1}}{2}} \right)\pi ,\,\left[ . \right]$$      denotes the greatest integer function, is discontinuous at-

A. all $$x$$
B. All integer points
C. No $$x$$
D. $$x$$ which is not an integer
Releted Question 4

The function $$f\left( x \right) = {\left[ x \right]^2} - \left[ {{x^2}} \right]$$    (where $$\left[ y \right]$$ is the greatest integer less than or equal to $$y$$ ), is discontinuous at-

A. all integers
B. all integers except 0 and 1
C. all integers except 0
D. all integers except 1

Practice More Releted MCQ Question on
Continuity


Practice More MCQ Question on Maths Section