Question

If $$f:R \to R$$   and $$g:R \to R$$   are given by $$f\left( x \right) = \left| x \right|$$   and $$g\left( x \right) = \left[ x \right]$$   for each $$x\, \in \,R,$$  then $$\left[ {x\, \in \,R:g\left( {f\left( x \right)} \right)} \right. \leqslant \left. {f\left( {g\left( x \right)} \right)} \right\} = ?$$

A. $$Z \cup \left( { - \infty ,\,0} \right)$$
B. $$\left( { - \infty ,\,0} \right)$$
C. $$Z$$
D. $$R$$  
Answer :   $$R$$
Solution :
$$\eqalign{ & g\left( {f\left( x \right)} \right) = g\left( {\left| x \right|} \right) = \left[ {\left| x \right|} \right]; \cr & f\left( {g\left( x \right)} \right) = f\left( {\left[ x \right]} \right) = \left| {\left[ x \right]} \right| \cr & {\text{When }}x \geqslant 0,\,\left[ {\left| x \right|} \right] = \left[ x \right] = \left| {\left[ x \right]} \right| \cr & \therefore \,f\left( {g\left( x \right)} \right) = g\left( {f\left( x \right)} \right) \cr & {\text{When }}x < 0,\,\left[ x \right] \leqslant x < 0 \Rightarrow \left| {\left[ x \right]} \right| \geqslant \left| x \right| \cr & \therefore \,\left| {\left[ x \right]} \right| \geqslant \left| x \right| \geqslant \left[ {\left| x \right|} \right] \cr & \Rightarrow f\left( {g\left( x \right)} \right) \geqslant g\left( {f\left( x \right)} \right) \cr & {\text{Thus, }}g\left( {f\left( x \right)} \right) \leqslant f\left( {g\left( x \right)} \right){\text{ for all }}x\, \in \,R \cr} $$

Releted MCQ Question on
Calculus >> Sets and Relations

Releted Question 1

If $$X$$ and $$Y$$ are two sets, then $$X \cap {\left( {X \cup Y} \right)^c}$$   equals.

A. $$X$$
B. $$Y$$
C. $$\phi $$
D. None of these
Releted Question 2

The expression $$\frac{{12}}{{3 + \sqrt 5 + 2\sqrt 2 }}$$    is equal to

A. $$1 - \sqrt 5 + \sqrt 2 + \sqrt {10} $$
B. $$1 + \sqrt 5 + \sqrt 2 - \sqrt {10} $$
C. $$1 + \sqrt 5 - \sqrt 2 + \sqrt {10} $$
D. $$1 - \sqrt 5 - \sqrt 2 + \sqrt {10} $$
Releted Question 3

If $${x_1},{x_2},.....,{x_n}$$    are any real numbers and $$n$$ is any positive integer, then

A. $$n\sum\limits_{i = 1}^n {{x_i}^2 < {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
B. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant {{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
C. $$\sum\limits_{i = 1}^n {{x_i}^2 \geqslant n{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} $$
D. none of these
Releted Question 4

Let $$S$$ = {1, 2, 3, 4}. The total number of unordered pairs of disjoint subsets of $$S$$ is equal to

A. 25
B. 34
C. 42
D. 41

Practice More Releted MCQ Question on
Sets and Relations


Practice More MCQ Question on Maths Section