Question

If $$f\left( {p,\,q} \right) = \int_0^{\frac{\pi }{2}} {{{\cos }^p}x\,\cos \,qx\,dx,} $$       then :

A. $$f\left( {p,\,q} \right) = \frac{q}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
B. $$f\left( {p,\,q} \right) = \frac{p}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$  
C. $$f\left( {p,\,q} \right) = - \frac{p}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
D. $$f\left( {p,\,q} \right) = - \frac{q}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
Answer :   $$f\left( {p,\,q} \right) = \frac{p}{{p + q}}f\left( {p - 1,\,q - 1} \right)$$
Solution :
$$\eqalign{ & f\left( {p,\,q} \right) = \int_0^{\frac{\pi }{2}} {{{\cos }^p}x\,\cos \,qx\,dx} \cr & \Rightarrow f\left( {p,\,q} \right) = \left[ {{{\cos }^p}x.\frac{{\sin \,qx}}{q}} \right]_0^{\frac{\pi }{2}} + \int_0^{\frac{\pi }{2}} {\frac{p}{q}{{\cos }^{p - 1}}x\,\sin \,x\,\sin \,qx\,dx} \cr & \Rightarrow f\left( {p,\,q} \right) = 0 + \frac{p}{q}\int_0^{\frac{\pi }{2}} {{{\cos }^{p - 1}}} x\left[ {\cos \left( {q - 1} \right)x - \cos \,qx\,\cos \,x} \right]dx \cr} $$
\[\left[ \begin{gathered} \because \,\cos \left( {q - 1} \right)x = \cos \,qx\,\cos \,x + \sin \,qx\,\sin \,x \hfill \\ \therefore \,\cos \left( {q - 1} \right)x - \cos \,qx\,\cos \,x = \sin \,qx\,\sin \,x \hfill \\ \end{gathered} \right]\]
$$\eqalign{ & \Rightarrow f\left( {p,\,q} \right) = \frac{p}{q}f\left( {p - 1,\,q - 1} \right) - \frac{p}{q}f\left( {p,\,q} \right) \cr & \Rightarrow \left( {1 + \frac{p}{q}} \right)f\left( {p,\,q} \right) = \frac{p}{q}f\left( {p - 1,\,q - 1} \right) \cr & \Rightarrow f\left( {p,\,q} \right) = \frac{p}{{p + q}}f\left( {p - 1,\,q - 1} \right) \cr} $$

Releted MCQ Question on
Calculus >> Definite Integration

Releted Question 1

The value of the definite integral $$\int\limits_0^1 {\left( {1 + {e^{ - {x^2}}}} \right)} \,dx$$     is-

A. $$ - 1$$
B. $$2$$
C. $$1 + {e^{ - 1}}$$
D. none of these
Releted Question 2

Let $$a,\,b,\,c$$   be non-zero real numbers such that $$\int\limits_0^1 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx = } \int\limits_0^2 {\left( {1 + {{\cos }^8}x} \right)\left( {a{x^2} + bx + c} \right)dx.} $$
Then the quadratic equation $$a{x^2} + bx + c = 0$$     has-

A. no root in $$\left( {0,\,2} \right)$$
B. at least one root in $$\left( {0,\,2} \right)$$
C. a double root in $$\left( {0,\,2} \right)$$
D. two imaginary roots
Releted Question 3

The value of the integral $$\int\limits_0^{\frac{\pi }{2}} {\frac{{\sqrt {\cot \,x} }}{{\sqrt {\cot \,x} + \sqrt {\tan \,x} }}dx} $$     is-

A. $$\frac{\pi }{4}$$
B. $$\frac{\pi }{2}$$
C. $$\pi $$
D. none of these
Releted Question 4

For any integer $$n$$ the integral $$\int\limits_0^\pi {{e^{{{\cos }^2}x}}} {\cos ^3}\left( {2n + 1} \right)xdx$$     has the value-

A. $$\pi $$
B. $$1$$
C. $$0$$
D. none of these

Practice More Releted MCQ Question on
Definite Integration


Practice More MCQ Question on Maths Section