Question

If $$f\left( 4 \right) = 4,\,f'\left( 4 \right) = 1,$$     then $$\mathop {\lim }\limits_{x \to 4} \frac{{2 - \sqrt {f\left( x \right)} }}{{2 - \sqrt x }}$$    is equal to :

A. 0
B. 1  
C. $$-1$$
D. none of these
Answer :   1
Solution :
$$\eqalign{ & {\text{Limit}} = \mathop {\lim }\limits_{x \to 4} \frac{{4 - f\left( x \right)}}{{4 - x}}.\frac{{2 + \sqrt x }}{{2 + \sqrt {f\left( x \right)} }} \cr & = \frac{{2 + 2}}{{2 + 2}}.\mathop {\lim }\limits_{x \to 4} \frac{{4 - f\left( x \right)}}{{4 - x}} \cr & = \mathop {\lim }\limits_{x \to 4} \frac{{ - f'\left( x \right)}}{{ - 1}} \cr & = f'\left( 4 \right) \cr & = 1 \cr} $$

Releted MCQ Question on
Calculus >> Limits

Releted Question 1

lf $$f\left( x \right) = \sqrt {\frac{{x - \sin \,x}}{{x + {{\cos }^2}x}}} ,$$     then $$\mathop {\lim }\limits_{x\, \to \,\infty } f\left( x \right)$$    is-

A. $$0$$
B. $$\infty $$
C. $$1$$
D. none of these
Releted Question 2

If $$G\left( x \right) = - \sqrt {25 - {x^2}} $$     then $$\mathop {\lim }\limits_{x\, \to \,{\text{I}}} \frac{{G\left( x \right) - G\left( I \right)}}{{x - 1}}$$     has the value-

A. $$\frac{1}{{24}}$$
B. $$\frac{1}{{5}}$$
C. $$ - \sqrt {24} $$
D. none of these
Releted Question 3

$$\mathop {\lim }\limits_{n\, \to \,\infty } \left\{ {\frac{1}{{1 - {n^2}}} + \frac{2}{{1 - {n^2}}} + ..... + \frac{n}{{1 - {n^2}}}} \right\}$$        is equal to-

A. $$0$$
B. $$ - \frac{1}{2}$$
C. $$ \frac{1}{2}$$
D. none of these
Releted Question 4

If $$\eqalign{ & f\left( x \right) = \frac{{\sin \left[ x \right]}}{{\left[ x \right]}},\,\,\left[ x \right] \ne 0 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\, = 0,\,\,\,\,\,\,\,\,\,\,\,\,\,\left[ x \right] = 0 \cr} $$
Where \[\left[ x \right]\] denotes the greatest integer less than or equal to $$x.$$ then $$\mathop {\lim }\limits_{x\, \to \,0} f\left( x \right)$$   equals

A. $$1$$
B. $$0$$
C. $$ - 1$$
D. none of these

Practice More Releted MCQ Question on
Limits


Practice More MCQ Question on Maths Section