Question

If $${e^x} = \frac{{\sqrt {1 + t} - \sqrt {1 - t} }}{{\sqrt {1 + t} + \sqrt {1 - t} }}$$     and $$\tan \frac{y}{2} = \sqrt {\frac{{1 - t}}{{1 + t}}} $$    then $$\frac{{dy}}{{dx}}$$  at $$t = \frac{1}{2}$$  is :

A. $$ - \frac{1}{2}$$  
B. $$\frac{1}{2}$$
C. 0
D. none of these
Answer :   $$ - \frac{1}{2}$$
Solution :
$$\eqalign{ & {\text{Let }}t = \cos \,2\theta \cr & {\text{Then }}{e^x} = \frac{{\sqrt {1 + \cos \,2\theta } - \sqrt {1 - \cos \,2\theta } }}{{\sqrt {1 + \cos \,2\theta } + \sqrt {1 - \cos \,2\theta } }} \cr & = \frac{{\cos \,\theta - \sin \,\theta }}{{\cos \,\theta + \sin \,\theta }} \cr & = \frac{{1 - \tan \,\theta }}{{1 + \tan \,\theta }} \cr & = \tan \left( {\frac{\pi }{4} - \theta } \right) \cr & \tan \frac{y}{2} = \sqrt {\frac{{1 - \cos \,2\theta }}{{1 + \cos \,2\theta }}} = \tan \,\theta \cr & {\text{At }}t = \frac{1}{2},\,\cos \,2\theta = \frac{1}{2}\,\,\,\,\,\,\, \Rightarrow \theta = \frac{\pi }{6} \cr & {\text{Then }}x = \log \,\tan \frac{\pi }{{12}},\,\,y = \frac{\pi }{3} \cr & {\text{Differentiating w}}{\text{.r}}{\text{.t}}{\text{.}}\,\theta ,\,{e^x}{\text{.}}\frac{{dx}}{{d\theta }} = - {\sec ^2}\left( {\frac{\pi }{4} - \theta } \right) \cr & {\text{and }}\frac{1}{2}{\sec ^2}\frac{y}{2}.\frac{{dy}}{{d\theta }} = {\sec ^2}\theta \cr & \therefore \,\,\frac{{dy}}{{dx}} = \frac{{\frac{{dy}}{{d\theta }}}}{{\frac{{dx}}{{d\theta }}}} = \frac{{2{{\sec }^2}\theta .{{\cos }^2}\frac{y}{2}}}{{ - {e^{ - x}}.{{\sec }^2}\left( {\frac{\pi }{4} - \theta } \right)}} \cr & {\text{At }}t = \frac{1}{2},\,{\text{i}}{\text{.e}}{\text{., }}\theta = \frac{\pi }{6},\,\frac{{dy}}{{dx}} = \frac{{2{{\sec }^2}\frac{\pi }{6}.{{\cos }^2}\frac{\pi }{6}}}{{ - {e^{ - \log \,\tan \,\frac{\pi }{{12}}}}.{{\sec }^2}\frac{\pi }{{12}}}} \cr & \therefore \,\frac{{dy}}{{dx}} = \frac{2}{{ - \cot \,\frac{\pi }{{12}}.{{\sec }^2}\frac{\pi }{{12}}}} \cr & = - 2\sin \,\frac{\pi }{{12}}.\cos \frac{\pi }{{12}} \cr & = - \sin \frac{\pi }{6} \cr & = - \frac{1}{2} \cr} $$

Releted MCQ Question on
Calculus >> Differentiability and Differentiation

Releted Question 1

There exist a function $$f\left( x \right),$$  satisfying $$f\left( 0 \right) = 1,\,f'\left( 0 \right) = - 1,\,f\left( x \right) > 0$$       for all $$x,$$ and-

A. $$f''\left( x \right) > 0$$   for all $$x$$
B. $$ - 1 < f''\left( x \right) < 0$$    for all $$x$$
C. $$ - 2 \leqslant f''\left( x \right) \leqslant - 1$$    for all $$x$$
D. $$f''\left( x \right) < - 2$$   for all $$x$$
Releted Question 2

If $$f\left( a \right) = 2,\,f'\left( a \right) = 1,\,g\left( a \right) = - 1,\,g'\left( a \right) = 2,$$         then the value of $$\mathop {\lim }\limits_{x \to a} \frac{{g\left( x \right)f\left( a \right) - g\left( a \right)f\left( x \right)}}{{x - a}}$$      is-

A. $$-5$$
B. $$\frac{1}{5}$$
C. $$5$$
D. none of these
Releted Question 3

Let $$f:R \to R$$   be a differentiable function and $$f\left( 1 \right) = 4.$$   Then the value of $$\mathop {\lim }\limits_{x \to 1} \int\limits_4^{f\left( x \right)} {\frac{{2t}}{{x - 1}}} dt$$     is-

A. $$8f'\left( 1 \right)$$
B. $$4f'\left( 1 \right)$$
C. $$2f'\left( 1 \right)$$
D. $$f'\left( 1 \right)$$
Releted Question 4

Let [.] denote the greatest integer function and $$f\left( x \right) = \left[ {{{\tan }^2}x} \right],$$    then:

A. $$\mathop {\lim }\limits_{x \to 0} f\left( x \right)$$     does not exist
B. $$f\left( x \right)$$  is continuous at $$x = 0$$
C. $$f\left( x \right)$$  is not differentiable at $$x =0$$
D. $$f'\left( 0 \right) = 1$$

Practice More Releted MCQ Question on
Differentiability and Differentiation


Practice More MCQ Question on Maths Section