Question

If \[{\Delta _r} = \left| {\begin{array}{*{20}{c}} {r - 1}&n&6\\ {{{\left( {r - 1} \right)}^2}}&{2{n^2}}&{4n - 2}\\ {{{\left( {r - 1} \right)}^2}}&{3{n^3}}&{3{n^2} - 3n} \end{array}} \right|,\]       then $$\sum\limits_{r = 1}^n {{\Delta _r}} $$  is

A. $$0$$  
B. $$1$$
C. $$3$$
D. $$ - 1$$
Answer :   $$0$$
Solution :
Since $$C_1$$ has variable terms and $$C_2$$ and $$C_3$$ are constant, summation runs on $$C_1 .$$ Therefore,
\[\begin{array}{l} \sum\limits_{r = 1}^n {{\Delta _r}} = \left| {\begin{array}{*{20}{c}} {\sum\limits_1^n {\left( {r - 1} \right)} }&n&6\\ {\sum\limits_1^n {{{\left( {r - 1} \right)}^2}} }&{2{n^2}}&{4n - 2}\\ {\sum\limits_1^n {{{\left( {r - 1} \right)}^3}} }&{3{n^3}}&{3{n^2} - 3n} \end{array}} \right|\\ = \,\left| {\begin{array}{*{20}{c}} {\frac{1}{2}\left( {n - 1} \right)n}&n&6\\ {\frac{1}{6}\left( {n - 1} \right)n\left( {2n - 1} \right)}&{2{n^2}}&{4n - 2}\\ {\frac{1}{4}{{\left( {n - 1} \right)}^2}{n^2}}&{3{n^3}}&{3{n^2} - 3n} \end{array}} \right| \end{array}\]
Taking $$\frac{1}{{12}}n\left( {n - 1} \right)$$   common from $$C_1$$ and $$n$$ common from $$C_2 ,$$ we get
\[\sum {{\Delta _r} = \frac{1}{{12}}{n^2}\left( {n - 1} \right) \times \left| {\begin{array}{*{20}{c}} 6&1&6\\ {2\left( {2n - 1} \right)}&{2n}&{2\left( {2n - 1} \right)}\\ {3n\left( {n - 1} \right)}&{3{n^3}}&{3n\left( {n - 1} \right)} \end{array}} \right|} \]
$$ = \,0\,\,\,\left[ {\because \,{C_1}\,{\text{and}}\,{C_3}\,{\text{are}}\,{\text{identical}}} \right]$$

Releted MCQ Question on
Algebra >> Matrices and Determinants

Releted Question 1

Consider the set $$A$$ of all determinants of order 3 with entries 0 or 1 only. Let $$B$$  be the subset of $$A$$ consisting of all determinants with value 1. Let $$C$$  be the subset of $$A$$ consisting of all determinants with value $$- 1.$$ Then

A. $$C$$ is empty
B. $$B$$  has as many elements as $$C$$
C. $$A = B \cup C$$
D. $$B$$  has twice as many elements as elements as $$C$$
Releted Question 2

If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity, then
\[\left| {\begin{array}{*{20}{c}} 1&{1 + i + {\omega ^2}}&{{\omega ^2}}\\ {1 - i}&{ - 1}&{{\omega ^2} - 1}\\ { - i}&{ - i + \omega - 1}&{ - 1} \end{array}} \right|=\]

A. 0
B. 1
C. $$i$$
D. $$\omega $$
Releted Question 3

Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A. no solution
B. unique solution
C. infinitely many solutions
D. finitely many solutions
Releted Question 4

If $$A$$ and $$B$$ are square matrices of equal degree, then which one is correct among the followings?

A. $$A + B = B + A$$
B. $$A + B = A - B$$
C. $$A - B = B - A$$
D. $$AB=BA$$

Practice More Releted MCQ Question on
Matrices and Determinants


Practice More MCQ Question on Maths Section