Question

If $$\cos \alpha = \frac{1}{2}\left( {x + \frac{1}{x}} \right),\cos \beta = \frac{1}{2}\left( {y + \frac{1}{y}} \right)$$        then $$\cos \left( {\alpha - \beta } \right)$$   is equal to

A. $$\frac{x}{y} + \frac{y}{x}$$
B. $${xy + \frac{1}{{xy}}}$$
C. $$\frac{1}{2}\left( {\frac{x}{y} + \frac{y}{x}} \right)$$  
D. None of these
Answer :   $$\frac{1}{2}\left( {\frac{x}{y} + \frac{y}{x}} \right)$$
Solution :
$$\eqalign{ & \cos \alpha = \frac{1}{2}\left( {x + \frac{1}{x}} \right) \cr & \Rightarrow \,\,x = \cos \alpha \pm i\sin \alpha . \cr & {\text{Similarly, }}y = \cos \beta \pm i\sin \beta . \cr & \therefore \,\,\frac{x}{y} = \cos \left( {\alpha - \beta } \right) \pm i\sin \left( {\alpha - \beta } \right), \cr & xy = \cos \left( {\alpha + \beta } \right) \pm i\sin \left( {\alpha + \beta } \right) \cr & {\text{and, }}\frac{y}{x} = \cos \left( {\alpha - \beta } \right) \mp i\sin \left( {\alpha - \beta } \right). \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section