Question
      
        If $$\cos \alpha  = \frac{1}{2}\left( {x + \frac{1}{x}} \right),\cos \beta  = \frac{1}{2}\left( {y + \frac{1}{y}} \right)$$        then $$\cos \left( {\alpha  - \beta } \right)$$   is equal to      
       A.
        $$\frac{x}{y} + \frac{y}{x}$$              
       B.
        $${xy + \frac{1}{{xy}}}$$              
       C.
        $$\frac{1}{2}\left( {\frac{x}{y} + \frac{y}{x}} \right)$$                 
              
       D.
        None of these              
            
                Answer :  
        $$\frac{1}{2}\left( {\frac{x}{y} + \frac{y}{x}} \right)$$      
             Solution :
        $$\eqalign{
  & \cos \alpha  = \frac{1}{2}\left( {x + \frac{1}{x}} \right)  \cr 
  &  \Rightarrow \,\,x = \cos \alpha  \pm i\sin \alpha .  \cr 
  & {\text{Similarly, }}y = \cos \beta  \pm i\sin \beta .  \cr 
  & \therefore \,\,\frac{x}{y} = \cos \left( {\alpha  - \beta } \right) \pm i\sin \left( {\alpha  - \beta } \right),  \cr 
  & xy = \cos \left( {\alpha  + \beta } \right) \pm i\sin \left( {\alpha  + \beta } \right)  \cr 
  & {\text{and, }}\frac{y}{x} = \cos \left( {\alpha  - \beta } \right) \mp i\sin \left( {\alpha  - \beta } \right). \cr} $$