Question

If $${\cos ^4}x + {\sin ^2}x - p = 0,p \in R$$      has real solutions then

A. $$p \leqslant 1$$
B. $$\frac{3}{4} \leqslant p \leqslant 1$$  
C. $$p \geqslant \frac{3}{4}$$
D. None of these
Answer :   $$\frac{3}{4} \leqslant p \leqslant 1$$
Solution :
$$\eqalign{ & {\cos ^4}x - {\cos ^2}x + 1 - p = 0;\,{\text{as }}0 \leqslant {\cos ^2}x \leqslant 1,\,{\text{the roots of }}{y^2} - y + 1 - p = 0\,\,{\text{lie between 0 and 1}}{\text{.}} \cr & \therefore \,\,\alpha \geqslant 0,\beta \geqslant 0,\alpha - 1 \leqslant 0,\beta - 1 \leqslant 0\,\,{\text{and }}D \geqslant 0 \cr & \Rightarrow \,\,\alpha + \beta \geqslant 0,\alpha \beta \geqslant 0,\alpha + \beta - 2 \leqslant 0,\alpha \beta - \left( {\alpha + \beta } \right) + 1 \geqslant 0\,\,{\text{and }}D \geqslant 0 \cr & \therefore \,\,1 \geqslant 0,1 - p \geqslant 0,1 - 2 \leqslant 0,1 - p - 1 + 1 \geqslant 0\,\,{\text{and }}1 - 4\left( {1 - p} \right) \geqslant 0. \cr} $$

Releted MCQ Question on
Algebra >> Quadratic Equation

Releted Question 1

If $$\ell ,m,n$$  are real, $$\ell \ne m,$$  then the roots by the equation: $$\left( {\ell - m} \right){x^2} - 5\left( {\ell + m} \right)x - 2\left( {\ell - m} \right) = 0$$         are

A. Real and equal
B. Complex
C. Real and unequal
D. None of these
Releted Question 2

The equation $$x + 2y + 2z = 1{\text{ and }}2x + 4y + 4z = 9{\text{ have}}$$

A. Only one solution
B. Only two solutions
C. Infinite number of solutions
D. None of these
Releted Question 3

Let $$a > 0, b > 0$$    and $$c > 0$$ . Then the roots of the equation $$a{x^2} + bx + c = 0$$

A. are real and negative
B. have negative real parts
C. both (A) and (B)
D. none of these
Releted Question 4

Both the roots of the equation $$\left( {x - b} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - c} \right) + \left( {x - a} \right)\left( {x - b} \right) = 0$$           are always

A. positive
B. real
C. negative
D. none of these.

Practice More Releted MCQ Question on
Quadratic Equation


Practice More MCQ Question on Maths Section