Question

If $${\cos ^4}\theta \cdot {\sec ^2}\alpha ,\frac{1}{2}$$    and $${\sin ^4}\theta \cdot {\text{cose}}{{\text{c}}^2}\alpha $$    are in A.P. then $${\cos ^8}\theta \cdot {\sec ^6}\alpha ,\frac{1}{2}$$    and $${\sin ^8}\theta \cdot {\text{cose}}{{\text{c}}^6}\alpha $$    are in

A. A.P.  
B. G.P.
C. H.P.
D. None of these
Answer :   A.P.
Solution :
Here, $${\cos ^4}\theta \cdot {\sec ^2}\alpha + {\sin ^4}\theta \cdot {\text{cose}}{{\text{c}}^2}\alpha = 1$$
$$\eqalign{ & {\text{or, }}{\cos ^4}\theta \cdot {\sin ^2}\alpha + {\sin ^4}\theta \cdot {\cos ^2}\alpha = {\sin ^2}\alpha \cdot {\cos ^2}\alpha \cr & {\text{or, }}\left( {1 - {{\sin }^2}\theta } \right){\cos ^2}\theta \cdot {\sin ^2}\alpha + {\sin ^4}\theta \cdot \left( {1 - {{\sin }^2}\alpha } \right) = {\sin ^2}\alpha \left( {1 - {{\sin }^2}\alpha } \right) \cr & {\text{or, }}{\cos ^2}\theta \,{\sin ^2}\alpha + {\sin ^4}\theta - {\sin ^2}\theta \,{\sin ^2}\alpha \left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right) = {\sin ^2}\alpha - {\sin ^4}\alpha \cr & {\text{or, }}{\sin ^4}\theta + {\sin ^4}\alpha - 2{\sin ^2}\theta \cdot {\sin ^2}\alpha = 0 \cr & \Rightarrow \,\,{\sin ^2}\theta = {\sin ^2}\alpha \,\,{\text{and so, }}{\cos ^2}\theta = {\cos ^2}\alpha . \cr & \therefore \,\,{\cos^8}\theta \cdot {\sec ^6}\alpha + {\sin ^8}\theta \cdot {\text{cose}}{{\text{c}}^6}\alpha = {\cos ^2}\theta + {\sin ^2}\theta = 1. \cr} $$

Releted MCQ Question on
Trigonometry >> Trigonometric Ratio and Identities

Releted Question 1

If $$\tan \theta = - \frac{4}{3},$$   then $$\sin \theta $$  is

A. $$ - \frac{4}{5}{\text{ but not }}\frac{4}{5}$$
B. $$ - \frac{4}{5}{\text{ or }}\frac{4}{5}$$
C. $$ \frac{4}{5}{\text{ but not }} - \frac{4}{5}$$
D. None of these
Releted Question 2

If $$\alpha + \beta + \gamma = 2\pi ,$$    then

A. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
B. $$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$$
C. $$\tan \frac{\alpha }{2} + \tan \frac{ \beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$$
D. None of these
Releted Question 3

Given $$A = {\sin ^2}\theta + {\cos ^4}\theta $$    then for all real values of $$\theta $$

A. $$1 \leqslant A \leqslant 2$$
B. $$\frac{3}{4} \leqslant A \leqslant 1$$
C. $$\frac{13}{16} \leqslant A \leqslant 1$$
D. $$\frac{3}{4} \leqslant A \leqslant \frac{{13}}{{16}}$$
Releted Question 4

The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A. 2
B. $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C. 4
D. $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$

Practice More Releted MCQ Question on
Trigonometric Ratio and Identities


Practice More MCQ Question on Maths Section