Question

If $${\cos ^{ - 1}}\left( {\frac{2}{{3x}}} \right) + {\cos ^{ - 1}}\left( {\frac{3}{{4x}}} \right) = \frac{\pi }{2}\left( {x > \frac{3}{4}} \right),$$         then

A. $$\frac{{\sqrt {145} }}{{12}}$$  
B. $$\frac{{\sqrt {145} }}{{10}}$$
C. $$\frac{{\sqrt {146} }}{{12}}$$
D. $$\frac{{\sqrt {145} }}{{11}}$$
Answer :   $$\frac{{\sqrt {145} }}{{12}}$$
Solution :
$$\eqalign{ & {\cos ^{ - 1}}\left( {\frac{2}{{3x}}} \right) + {\cos ^{ - 1}}\left( {\frac{3}{{4x}}} \right) = \frac{\pi }{2};\left( {x > \frac{3}{4}} \right) \cr & \Rightarrow \,\,{\cos ^{ - 1}}\left( {\frac{2}{{3x}}} \right)\frac{\pi }{2} - {\cos ^{ - 1}}\left( {\frac{3}{{4x}}} \right) \cr & \Rightarrow \,\,{\cos ^{ - 1}}\left( {\frac{2}{{3x}}} \right) = {\sin ^{ - 1}}\left( {\frac{3}{{4x}}} \right) \cr & \left[ {\because \,\,{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x = \frac{\pi }{2}} \right] \cr & {\text{Put }}{\sin ^{ - 1}}\left( {\frac{3}{{4x}}} \right) = \theta \cr & \Rightarrow \,\,\sin \theta = \frac{3}{{4x}} \cr & \Rightarrow \,\,\cos \theta = \sqrt {1 - {{\sin }^2}\theta } \cr & = \sqrt {1 - \frac{9}{{16{x^2}}}} \cr & \Rightarrow \,\,\theta = {\cos ^{ - 1}}\left( {\frac{{\sqrt {16{x^2} - 9} }}{{4x}}} \right) \cr & \therefore \,\,{\cos ^{ - 1}}\left( {\frac{2}{{3x}}} \right) \cr & = {\cos ^{ - 1}}\left( {\frac{{\sqrt {16{x^2} - 9} }}{{4x}}} \right) \cr & \Rightarrow \,\,\frac{2}{{3x}} = \frac{{\sqrt {16{x^2} - 9} }}{{4x}} \cr & \Rightarrow \,\,{x^2} = \frac{{64 + 81}}{{9 \times 16}} \cr & \Rightarrow \,\,x = \pm \sqrt {\frac{{145}}{{144}}} \cr & \Rightarrow \,\,x = \frac{{\sqrt {145} }}{{12}}\,\,\left( {\because \,\,x > \frac{3}{4}} \right) \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section