Question

If center of a regular hexagon is at origin and one of the vertex on argand diagram is $$1 + 2i,$$  then its perimeter is

A. $$2\sqrt 5 $$
B. $$6\sqrt 2 $$
C. $$4\sqrt 5 $$
D. $$6\sqrt 5 $$  
Answer :   $$6\sqrt 5 $$
Solution :
Let the vertices be $${z_0},{z_1},.....,{z_5}$$   w.r.t. center $$O$$ at origin and $$\left| {{z_0}} \right| = \sqrt 5 .$$
Complex Number mcq solution image
$$\eqalign{ & \Rightarrow \,{A_0}{A_1} = \left| {{z_1} - {z_0}} \right| = \left| {{z_0}{e^{i\theta }} - {z_0}} \right| \cr & = \,\left| {{z_0}} \right|\left| {\cos \,\theta + i\,\sin \,\theta - 1} \right| \cr & = \,\sqrt 5 \sqrt {{{\left( {\cos \,\theta - 1} \right)}^2} + {{\sin }^2}\,\theta } \cr & = \,\sqrt 5 \sqrt {2\left( {1 - \cos \,\theta } \right)} = \sqrt 5 \,2\sin \left( {\frac{\theta }{2}} \right) \cr & \Rightarrow \,{A_0}{A_1} = \sqrt 5 .\,2\sin \left( {\frac{\pi }{6}} \right) = \sqrt 5 \cr & \left( {\because \,\theta = \frac{{2\pi }}{6} = \frac{\pi }{3}} \right) \cr} $$
Similarly, $${A_1}{A_2} = {A_2}{A_3} = {A_3}{A_4} = {A_4}{A_5} + {A_5}{A_0} = 6\sqrt 5 .$$
Hence the perimeter of regular polygon is
$$ = \,{A_0}{A_1} + {A_1}{A_2} + {A_2}{A_3} + {A_3}{A_4} + {A_4}{A_5} + {A_5}{A_0} = 6\sqrt 5 .$$

Releted MCQ Question on
Algebra >> Complex Number

Releted Question 1

If the cube roots of unity are $$1,\omega ,{\omega ^2},$$  then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0\,\,{\text{are}}$$

A. $$ - 1,1 + 2\omega ,1 + 2{\omega ^2}$$
B. $$ - 1,1 - 2\omega ,1 - 2{\omega ^2}$$
C. $$- 1, - 1, - 1$$
D. none of these
Releted Question 2

The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A. $$n = 8$$
B. $$n = 16$$
C. $$n = 12$$
D. none of these
Releted Question 3

The complex numbers $$z = x+ iy$$   which satisfy the equation $$\left| {\frac{{z - 5i}}{{z + 5i}}} \right| = 1$$   lie on

A. the $$x$$ - axis
B. the straight line $$y = 5$$
C. a circle passing through the origin
D. none of these
Releted Question 4

If $$z = {\left( {\frac{{\sqrt 3 }}{2} + \frac{i}{2}} \right)^5} + {\left( {\frac{{\sqrt 3 }}{2} - \frac{i}{2}} \right)^5},\,{\text{then}}$$

A. $${\text{Re}}\left( z \right) = 0$$
B. $${\text{Im}}\left( z \right) = 0$$
C. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) > 0$$
D. $${\text{Re}}\left( z \right) > 0,{\text{Im}}\left( z \right) < 0$$

Practice More Releted MCQ Question on
Complex Number


Practice More MCQ Question on Maths Section