Question

If $${C_0},{C_1},{C_2},.....,{C_{15}}$$     are binomial coefficients in $${\left( {1 + x} \right)^{15}},\,$$  then $$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + ..... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $$

A. 60
B. 120  
C. 64
D. 124
Answer :   120
Solution :
General term of the given series is
$$r\frac{{^n{C_r}}}{{^n{C_{r - 1}}}} = n + 1 - r$$
By taking summation over $$n,$$ we get
$$\eqalign{ & \sum\limits_1^{15} {r\frac{{^n{C_r}}}{{^n{C_{r - 1}}}}} = \sum\limits_{n = 1}^{15} {\left( {n + 1 - r} \right)} = \sum\limits_1^{15} {\left( {16 - r} \right)} \cr & = 16 \times 15 - \frac{1}{2} \cdot 15 \times 16 \cr} $$
By using sum of $$n$$ natural numbers $$ = \frac{{n\left( {n + 1} \right)}}{2}$$
$$= 240 - 120 = 120$$

Releted MCQ Question on
Algebra >> Binomial Theorem

Releted Question 1

Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A. $$n = 2r$$
B. $$n = 2r + 1$$
C. $$n = 3r$$
D. none of these
Releted Question 2

The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A. $$\frac{{405}}{{256}}$$
B. $$\frac{{504}}{{259}}$$
C. $$\frac{{450}}{{263}}$$
D. none of these
Releted Question 3

The expression $${\left( {x + {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5} + {\left( {x - {{\left( {{x^3} - 1} \right)}^{\frac{1}{2}}}} \right)^5}$$       is a polynomial of degree

A. 5
B. 6
C. 7
D. 8
Releted Question 4

If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A. 6
B. 9
C. 12
D. 24

Practice More Releted MCQ Question on
Binomial Theorem


Practice More MCQ Question on Maths Section