Question

If $$C$$ and $$R$$ denote capacitance and resistance respectively, then the dimensional formula of $$CR$$  is

A. $$\left[ {{M^0}{L^0}T} \right]$$  
B. $$\left[ {{M^0}{L^0}{T^0}} \right]$$
C. $$\left[ {{M^0}{L^0}{T^{ - 1}}} \right]$$
D. Not expressible in terms of $$\left[ {MLT} \right]$$
Answer :   $$\left[ {{M^0}{L^0}T} \right]$$
Solution :
$$\eqalign{ & \because C = \frac{q}{V} = \frac{q}{{\frac{W}{q}}} = \frac{{{q^2}}}{W} = \frac{{{{\left( {it} \right)}^2}}}{{F \cdot x}} = \frac{{{{\left[ {AT} \right]}^2}}}{{\left[ {M{L^2}{T^{ - 2}}} \right]}} \cr & = \left[ {{M^{ - 1}}{L^{ - 2}}{T^4}{A^2}} \right]\,\,{\text{and }}R = \frac{V}{i} = \frac{W}{{qi}} = \frac{{F \cdot x}}{{{i^2}t}} \cr & = \frac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]\left[ A \right]}} = \left[ {M{L^2}{T^{ - 3}}{A^{ - 2}}} \right] \cr & \therefore {\text{Dimensional formula of }}CR = \left[ {{M^{ - 1}}\;{L^{ - 2}}\;{T^4}\;{A^2}} \right]\left[ {M{L^2}\;{T^{ - 3}}\;{A^{ - 2}}} \right] \cr & = \left[ {{M^0}\;{L^0}\;T} \right] \cr} $$

Releted MCQ Question on
Basic Physics >> Unit and Measurement

Releted Question 1

The dimension of $$\left( {\frac{1}{2}} \right){\varepsilon _0}{E^2}$$  ($${\varepsilon _0}$$ : permittivity of free space, $$E$$ electric field)

A. $$ML{T^{ - 1}}$$
B. $$M{L^2}{T^{ - 2}}$$
C. $$M{L^{ - 1}}{T^{ - 2}}$$
D. $$M{L^2}{T^{ - 1}}$$
Releted Question 2

A quantity $$X$$ is given by $${\varepsilon _0}L\frac{{\Delta V}}{{\Delta t}}$$   where $${ \in _0}$$ is the permittivity of the free space, $$L$$ is a length, $$\Delta V$$ is a potential difference and $$\Delta t$$ is a time interval. The dimensional formula for $$X$$ is the same as that of-

A. resistance
B. charge
C. voltage
D. current
Releted Question 3

A cube has a side of length $$1.2 \times {10^{ - 2}}m$$  . Calculate its volume.

A. $$1.7 \times {10^{ - 6}}{m^3}$$
B. $$1.73 \times {10^{ - 6}}{m^3}$$
C. $$1.70 \times {10^{ - 6}}{m^3}$$
D. $$1.732 \times {10^{ - 6}}{m^3}$$
Releted Question 4

Pressure depends on distance as, $$P = \frac{\alpha }{\beta }exp\left( { - \frac{{\alpha z}}{{k\theta }}} \right),$$     where $$\alpha ,$$ $$\beta $$ are constants, $$z$$ is distance, $$k$$ is Boltzman’s constant and $$\theta $$ is temperature. The dimension of $$\beta $$ are-

A. $${M^0}{L^0}{T^0}$$
B. $${M^{ - 1}}{L^{ - 1}}{T^{ - 1}}$$
C. $${M^0}{L^2}{T^0}$$
D. $${M^{ - 1}}{L^1}{T^2}$$

Practice More Releted MCQ Question on
Unit and Measurement


Practice More MCQ Question on Physics Section