Question

If $$ax + b\left( {\sec \left( {{{\tan }^{ - 1}}x} \right)} \right) = c\,$$     and $$ay + b\left( {\sec \left( {{{\tan }^{ - 1}}y} \right)} \right) = c,\,$$     then $$\frac{{x + y}}{{1 - xy}} = $$

A. $$\frac{{ac}}{{{a^2} + {c^2}}}$$
B. $$\frac{{2ac}}{{{a} - {c}}}$$
C. $$\frac{{2ac}}{{{a^2} - {c^2}}}$$  
D. $$\frac{{a + c}}{{{1} - {ac}}}$$
Answer :   $$\frac{{2ac}}{{{a^2} - {c^2}}}$$
Solution :
$$\eqalign{ & {\text{Let, }}{\tan ^{ - 1}}x = \alpha {\text{ and }}{\tan ^{ - 1}}y = \beta \cr & \Rightarrow \tan \alpha = x,\tan \beta = y \cr} $$
The given system of equations is
$$a\tan \alpha + b\sec \alpha = c{\text{ and }}a\tan \beta + b\sec \beta = c$$
$$\therefore \alpha {\text{ and }}\beta $$   are the roots of $$a\tan \theta + b\sec \theta = c$$
$$\eqalign{ & \Rightarrow {\left( {b\sec \theta } \right)^2} = {\left( {c - a\tan \theta } \right)^2} \cr & \Rightarrow \left( {{a^2} - {b^2}} \right){\tan ^2}\theta - 2ac\tan \theta + {c^2} - {b^2} = 0 \cr & \Rightarrow \tan \alpha + \tan \beta = \frac{{2ac}}{{{a^2} - {b^2}}}{\text{ and }}\tan \alpha \tan \beta = \frac{{{c^2} - {b^2}}}{{{a^2} - {b^2}}} \cr & \Rightarrow x + y = \frac{{2ac}}{{{a^2} - {b^2}}}{\text{ and }}xy = \frac{{{c^2} - {b^2}}}{{{a^2} - {b^2}}} \cr & \Rightarrow 1 - xy = \frac{{{a^2} - {c^2}}}{{{a^2} - {b^2}}} \cr & \Rightarrow \frac{{x + y}}{{1 - xy}} = \frac{{2ac}}{{{a^2} - {c^2}}} \cr} $$

Releted MCQ Question on
Trigonometry >> Inverse Trigonometry Function

Releted Question 1

The value of $$\tan \left[ {{{\cos }^{ - 1}}\left( {\frac{4}{5}} \right) + {{\tan }^{ - 1}}\left( {\frac{2}{3}} \right)} \right]$$      is

A. $$\frac{6}{{17}}$$
B. $$\frac{7}{{16}}$$
C. $$\frac{16}{{7}}$$
D. none
Releted Question 2

If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A. $$\frac{{\sqrt {29} }}{3}$$
B. $$\frac{{29}}{3}$$
C. $$\frac{{\sqrt {3}}}{29}$$
D. $$\frac{{3}}{29}$$
Releted Question 3

The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$         is

A. zero
B. one
C. two
D. infinite
Releted Question 4

If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A. $$ \frac{1}{2}$$
B. 1
C. $$ - \frac{1}{2}$$
D. $$- 1$$

Practice More Releted MCQ Question on
Inverse Trigonometry Function


Practice More MCQ Question on Maths Section